File size: 10,893 Bytes
cdf5f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import os
import numpy as np
import wandb
from PIL import Image
from models.resnet import resnet18, resnet34, resnet50
from models.openmax import OpenMax
# from models.metamax import MetaMax
from utils.data_stats import calculate_dataset_stats, load_dataset_stats
from utils.eval_utils import evaluate_known_classes, evaluate_openmax, evaluate_metamax
from pprint import pprint
import math


class GameDataset(Dataset):
    def __init__(self, data_dir, num_labels=20, transform=None):
        self.data_dir = data_dir
        self.transform = transform
        self.images = []
        self.labels = []
        self.image_paths = []
        
        if not os.path.exists(data_dir):
            raise ValueError(f"Data directory {data_dir} does not exist")
            
        # 遍历数据目录加载图片和标签
        for class_dir in range(num_labels):  # 训练集为0-19类,验证集为0-20类
            class_path = os.path.join(data_dir, f"{class_dir:02d}")
            if os.path.exists(class_path):
                for img_name in os.listdir(class_path):
                    if img_name.endswith('.png'):
                        img_path = os.path.join(class_path, img_name)
                        try:
                            # 读取PNG图片,只保留RGB通道
                            img = np.array(Image.open(img_path))[:, :, :3]  # 只取前3个通道
                            if img.shape != (50, 50, 3):
                                print(f"Skipping {img_path} due to invalid shape: {img.shape}")
                                continue
                                
                            self.images.append(img)
                            self.labels.append(class_dir)
                            self.image_paths.append(img_path)
                        except Exception as e:
                            print(f"Error loading {img_path}: {e}")
                            continue
        
        self.images = np.array(self.images)
        self.labels = np.array(self.labels)
        print(f"Loaded {len(self.images)} images from {data_dir}")
    
    def __len__(self):
        return len(self.images)
    
    def __getitem__(self, idx):
        image = self.images[idx]
        label = self.labels[idx]
        path = self.image_paths[idx]
        
        if self.transform:
            image = self.transform(image)
        
        return image, label, path



def train(num_epochs = 20, batch_size = 256, learning_rate = 0.001, dropout_rate = 0.3, patience = 10, model_type='resnet34'):
    from post_train import collect_features
    os.makedirs('models', exist_ok=True)
    os.makedirs('wandb_logs', exist_ok=True)
    images_path = os.path.join('jk_zfls', 'round0_train')
    # 尝试加载已保存的数据集统计信息,如果不存在则重新计算
    try:
        mean, std = load_dataset_stats()
        print("Loaded pre-calculated dataset statistics")
    except FileNotFoundError:
        print("FileNotFound, Calculating dataset statistics...")
        mean, std = calculate_dataset_stats(images_path)
        
    wandb.init(
        project="jk_zfls",
        name=f"{model_type}-training",
        config={
            "learning_rate": learning_rate,
            "batch_size": batch_size,
            "epochs": num_epochs,
            "model": f"{model_type}",
            "num_classes": 20
        },
        dir="./wandb_logs"
    )
    
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    # 计算填充值 (将均值从[0,1]转换为[0,255])
    fill_value = tuple(int(x * 255) for x in mean)
    
    # 增加数据增强
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.RandomAffine(
            degrees=15,
            translate=(0.1, 0.1),
            scale=(0.9, 1.1),
            fill=fill_value  # 使用数据集的均值作为填充值
        ),
        transforms.Normalize(mean=mean, std=std)
    ])
    
    # 验证集不需要数据增强
    val_transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean=mean, std=std)
    ])
    
    # 加载数据集
    train_dataset = GameDataset('jk_zfls/round0_train', num_labels=20, transform=transform)
    val_dataset = GameDataset('jk_zfls/round0_eval', num_labels=21, transform=val_transform)
    
    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4, pin_memory=True)
    val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=4, pin_memory=True)
    
    # 根据选择加载不同的模型
    if model_type == 'resnet18':
        model = resnet18(num_classes=20, dropout_rate=dropout_rate)
    elif model_type == 'resnet34':
        model = resnet34(num_classes=20, dropout_rate=dropout_rate)
    elif model_type == 'resnet50':
        model = resnet50(num_classes=20, dropout_rate=dropout_rate)
    else:
        raise ValueError(f"Unsupported model type: {model_type}")
        
    # 加载模型(和已有参数)
    # checkpoint = torch.load('models/best_model_99.75.pth')
    # model.load_state_dict(checkpoint['model_state_dict'])
    model = model.to(device)
    
    # 定义损失函数和优化器,使用更小的学习率
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=learning_rate * 0.1, weight_decay=1e-3)
    
    # optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=1e-4)
    # scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=10)
    # 使用带 warmup 的 cosine 调度器
    num_training_steps = len(train_loader) * num_epochs
    num_warmup_steps = len(train_loader) * 5      # 5个epoch的warmup
    
    # 定义warmup调度器和ReduceLROnPlateau调度器
    warmup_scheduler = optim.lr_scheduler.LinearLR(
        optimizer,
        start_factor=0.1,  # 从0.1倍的学习率开始
        end_factor=1.0,    # 最终达到设定的学习率
        total_iters=num_warmup_steps
    )

    reduce_scheduler = optim.lr_scheduler.ReduceLROnPlateau(
        optimizer,
        mode='max',
        factor=0.5,
        patience=5,
        verbose=True,
        min_lr=1e-6
    )

    patience_counter = 0  # 计数器,记录连续没有提升的轮数
    best_params = {
        'epoch': None,
        'model_state_dict': None,
        'optimizer_state_dict': None,
        'loss': None,
        'best_val_acc': 0
    }
    for epoch in range(num_epochs):
        # 训练阶段
        model.train()
        total_loss = 0
        
        for batch_idx, (images, labels, paths) in enumerate(train_loader):
            images, labels = images.to(device), labels.to(device)
            
            optimizer.zero_grad()
            logits = model(images)
            loss = criterion(logits, labels)
            loss.backward()
            optimizer.step()
            
            total_loss += loss.item()
            
            if batch_idx % 10 == 0:
                print(f'Epoch: {epoch}, Batch: {batch_idx}, Loss: {loss.item():.4f}')
            
            # 在warmup阶段更新学习率
            if epoch * len(train_loader) + batch_idx < num_warmup_steps:
                warmup_scheduler.step()
        
        train_loss = total_loss / len(train_loader)
        
        # 验证阶段(只验证已知类别)
        val_loss, val_acc, val_errors = evaluate_known_classes(model, val_loader, criterion, device)
        
        # 记录到wandb
        wandb.log({
            'epoch': epoch,
            'train_loss': train_loss,
            'val_loss': val_loss,
            'val_accuracy': val_acc
        })
        
        print(f'Epoch {epoch}:')
        print(f'Train Loss = {train_loss:.4f}, Val Loss = {val_loss:.4f}, Val Accuracy = {val_acc:.2f}%')
        
        # 验证阶段后更新ReduceLROnPlateau
        reduce_scheduler.step(val_acc)
        
        # 打印当前学习率
        current_lr = optimizer.param_groups[0]['lr']
        print(f'Current learning rate: {current_lr:.2e}')
        
        # 记录最佳模型(基于验证集准确率)
        if val_acc > best_params['best_val_acc']:
            patience_counter = 0  # 重置计数器
            best_params.update({
                'epoch': epoch,
                'model_state_dict': model.state_dict(),
                'optimizer_state_dict': optimizer.state_dict(),
                'loss': val_loss,
                'best_val_acc': val_acc
            })
        else:
            patience_counter += 1  # 增加计数器
            print(f'Validation accuracy did not improve. Patience: {patience_counter}/{patience}')
        
        # 早停检查
        if patience_counter >= patience:
            print(f"\nEarly stopping triggered! No improvement for {patience} consecutive epochs.")
            break
            
        if val_acc == 100:
            print(f'Achieved 100% accuracy at epoch {epoch}')
            break
            
    
    # 训练完成后,保存最佳模型的参数
    print("Saving best model parameters...")
    torch.save(best_params, f'models/{model_type}_{best_params["best_val_acc"]:.2f}.pth')
    
    # 使用最佳模型收集features
    print("Collecting features from best model for OpenMax/MetaMax training...")
    model.load_state_dict(best_params['model_state_dict'])
    model.eval()
    features, labels = collect_features(model, train_loader, device, return_logits=False)
    
    # 训练OpenMax/MetaMax
    openmax = OpenMax(num_classes=20)
    openmax.fit(features, labels)
    
    # metamax = MetaMax(num_classes=20)
    # metamax.fit(features, labels)
    
    # 保存模型
    torch.save(openmax, 'models/openmax.pth')
    # torch.save(metamax, 'models/metamax.pth')
    print("OpenMax and MetaMax models saved")
    # 在训练完OpenMax后添加评估
    print("Evaluating OpenMax and MetaMax...")
    val_features, val_logits, val_labels = collect_features(model, val_loader, device, return_logits=True)

    overall_acc, known_acc, unknown_acc = evaluate_openmax(openmax, val_features, val_logits, val_labels, multiplier=0.5)
    print(f"Multiplier: 0.5, Overall Accuracy: {overall_acc:.2f}%")
    # evaluate_metamax(metamax, val_features, val_labels, device)
    wandb.finish()

if __name__ == '__main__':
    train(num_epochs=100, batch_size=64, learning_rate=0.001, dropout_rate=0.3, patience=20, model_type='resnet50')