File size: 5,175 Bytes
5e6fb83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
import gymnasium
from gymnasium import spaces
import numpy as np
# Define the environment class. There is a (12*12) grid, and the agent can move in four directions and collect randomly initialized items. The items are divided into 21 categories represented by int in range(21), and the number of each category is a multiple of 4.
class GridWorldEnv(gymnasium.Env):
metadata = {'render.modes': ['human']}
def __init__(self):
super(GridWorldEnv, self).__init__()
self.grid_size = (12, 12)
self.num_categories = 21
self.action_space = spaces.Discrete(5) # 0: down, 1: right, 2: up, 3: left, 4: collect
# self.action_space = spaces.Box(low=0, high=5, shape=(1,), dtype=np.int64)
# self.observation_space = spaces.Dict({
# 'grid': spaces.Box(low=-1 / 20, high=20 / 20, shape=self.grid_size, dtype=np.float64),
# 'loc': spaces.Box(low=0 / 12, high=11 / 12, shape=(2,), dtype=np.float64),
# 'bag': spaces.Box(low=0 / 4, high=4 / 4, shape=(self.num_categories, 1), dtype=np.float64)})
self.observation_space = spaces.Box(low=-1, high=20, shape=(144+2+self.num_categories, ), dtype=np.float64)
self.max_steps = 4 * 12 * 12
self.reset()
def reset(self, seed=None):
self.grid = self.initialize_grid()
self.loc = np.random.randint(0, self.grid_size[0], 2)
self.bag = np.zeros((self.num_categories, 1), dtype=int)
self.steps = 0
return self._get_obs(), self._get_info()
def initialize_grid(self): # Randomly initialize the grid
grid = np.zeros(self.grid_size, dtype=int)
total_cells = self.grid_size[0] * self.grid_size[1]
remaining_cells = total_cells
category_counts = []
# Ensure each category has at least 4 items and is a multiple of 4
for _ in range(self.num_categories - 1):
count = np.random.randint(1, 3) * 4
if count > remaining_cells:
count = remaining_cells
category_counts.append(count)
remaining_cells -= count
# Assign the remaining cells to the last category
category_counts.append(remaining_cells)
# Shuffle the positions and assign categories
positions = np.random.permutation(total_cells)
index = 0
for category, count in enumerate(category_counts):
for _ in range(count):
x, y = divmod(positions[index], self.grid_size[1])
grid[x, y] = category
index += 1
return grid
def step(self, action):
action = int(action)
self.steps += 1
reward = -0.1 - np.sum(self.bag) / (12 * 12)
if action == 0: # down
self.loc[0] = min(self.loc[0] + 1, self.grid_size[0] - 1)
elif action == 1: # right
self.loc[1] = min(self.loc[1] + 1, self.grid_size[1] - 1)
elif action == 2: # up
self.loc[0] = max(self.loc[0] - 1, 0)
elif action == 3: # left
self.loc[1] = max(self.loc[1] - 1, 0)
elif action == 4: # collect
x, y = self.loc
if self.grid[x, y] == -1:
reward -= 2 # Penalty for collecting an empty cell
else:
self.bag[self.grid[x, y]] += 1
self.grid[x, y] = -1 # Remove the item from the grid
# 如果bag中有4个相同的物品,消除这4个物品,并获得奖励=+1
if np.any(self.bag == 4):
category = np.argmax(self.bag == 4)
self.bag[category] -= 4
reward += 1
done = bool(np.sum(self.grid) == -12 * 12) # Done when all items are collected
if done:
reward += 100
truncated = bool(self.steps >= self.max_steps) # Truncate the episode after a certain number of steps
if truncated:
reward = -3 * (np.sum(self.bag) + np.sum(self.grid != -1)) # Penalty for not collecting enough items
# print(f'grid: {self.grid}')
return self._get_obs(), reward, done, truncated, self._get_info()
def _get_obs(self):
# return {'grid': np.copy(self.grid) / 20, 'loc': np.copy(self.loc) / 12, 'bag': np.copy(self.bag) / 4}
return np.concatenate((self.grid.flatten(), self.loc, self.bag.flatten()))
def _get_info(self):
return {'grid': np.copy(self.grid) / 20, 'loc': np.copy(self.loc) / 12, 'bag': np.copy(self.bag) / 4}
def render(self, mode='rgb_array'):
if mode == 'human':
print("Grid:")
print(self.grid)
print("Loc:", self.loc)
print("Bag:", self.bag)
def close(self):
pass
if __name__ == "__main__":
# Example usage
env = GridWorldEnv()
obs = env.reset()
env.render()
obs, reward, done, info = env.step(1) # Move right
env.render()
obs, reward, done, info = env.step(0) # Move down
env.render()
obs, reward, done, info = env.step(4) # Collect item
env.render()
|