File size: 8,058 Bytes
b034760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import torch
from torch.utils.data import DataLoader
from models.resnet import resnet18, resnet34, resnet50
from models.openmax import OpenMax
from models.metamax import MetaMax
from train import GameDataset
from utils.eval_utils import evaluate_openmax, evaluate_metamax
from torchvision import transforms
from utils.data_stats import load_dataset_stats
from pprint import pprint

def prepare_data_and_model(model_path='models/best_model.pth', model_type='resnet18', batch_size=400):
    """准备数据和模型"""
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    # 加载数据集统计信息和准备数据
    mean, std = load_dataset_stats()
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean=mean, std=std)
    ])
    
    # 加载训练集和验证集
    train_dataset = GameDataset('jk_zfls/round0_train', num_labels=20, transform=transform)
    val_dataset = GameDataset('jk_zfls/round0_eval', num_labels=21, transform=transform)
    
    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=False, 
                            num_workers=4, pin_memory=True)
    val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, 
                        num_workers=4, pin_memory=True)
    
    # 加载预训练模型
    if model_type == 'resnet18':
        model = resnet18(num_classes=20)
    elif model_type == 'resnet34':
        model = resnet34(num_classes=20)
    elif model_type == 'resnet50':
        model = resnet50(num_classes=20)
        
    checkpoint = torch.load(model_path)
    model.load_state_dict(checkpoint['model_state_dict'])
    model = model.to(device)
    model.eval()
    
    return model, train_loader, val_loader, device

def collect_features(model, loader, device, return_logits=False):
    """收集特征和标签"""
    features_list = []
    logits_list = []
    labels_list = []
    
    with torch.no_grad():
        for images, labels, paths in loader:
            images = images.to(device)
            if return_logits:
                logits, features = model(images, return_features=True)
                logits_list.append(logits.cpu())
            else:
                _, features = model(images, return_features=True)
            features_list.append(features.cpu())
            labels_list.append(labels)
    
    if return_logits:
        return torch.cat(features_list), torch.cat(logits_list), torch.cat(labels_list)
    else:
        return torch.cat(features_list), torch.cat(labels_list)

def train_openmax(features,labels, model, val_loader, device, fraction=0.2):
    """训练和评估OpenMax模型

    fraction: 未知类别比例

    """
    # OpenMax特定的超参数搜索空间
    # alpha_range = [3, 5, 8, 12, 16, 20]
    alpha_range = [12, 13, 14, 15, 16, 17, 18, 19, 20]
    # tailsize_range = [10, 15, 20, 25, 30]
    tailsize_range = [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
    # multiplier_range = [0.5, 0.75, 1, 1.25, 1.5]
    multiplier_range = [0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
    
    best_params = {
        'alpha': None,
        'tailsize': None,
        'multiplier': None,
        'accuracy': .0,
        'model': None
    }
    val_features, val_logits, val_labels = collect_features(model, val_loader, device, return_logits=True)
    print("\n=== Training OpenMax ===")
    for alpha in alpha_range:
        for tailsize in tailsize_range:
            print(f"\nTraining OpenMax with alpha={alpha}, tailsize={tailsize}")
            
            openmax = OpenMax(num_classes=20, tailsize=tailsize, alpha=alpha)
            openmax.fit(features, labels)
            print(f"Training finished, evaluating...")
            for multiplier in multiplier_range:
                overall_acc, known_acc, unknown_acc = evaluate_openmax(
                    openmax, val_features, val_logits, val_labels, multiplier=multiplier, fraction=fraction, verbose=False
                )
                if overall_acc > best_params['accuracy']:
                    best_params.update({
                        'alpha': alpha,
                        'tailsize': tailsize,
                        'multiplier': multiplier,
                        'accuracy': overall_acc,
                        'model': openmax
                    })
                    print(f"\nNew best OpenMax parameters found:")
                    print(f"Alpha: {alpha}")
                    print(f"Tailsize: {tailsize}")
                    print(f"Multiplier: {multiplier}")
                    print(f"Overall Accuracy: {overall_acc:.2f}%")
                    print(f"Known Classes Accuracy: {known_acc:.2f}%")
                    print(f"Unknown Class Accuracy: {unknown_acc:.2f}%")
                    
                elif overall_acc > 95.0:

                    print(f"Alpha: {alpha}")
                    print(f"Tailsize: {tailsize}")
                    print(f"Multiplier: {multiplier}")
                    print(f"Overall Accuracy: {overall_acc:.2f}%")
                    print(f"Known Classes Accuracy: {known_acc:.2f}%")
                    print(f"Unknown Class Accuracy: {unknown_acc:.2f}%")

                    
    
    return best_params

def train_metamax(features, labels, model, val_loader, device):
    """训练和评估MetaMax模型"""
    # MetaMax特定的超参数搜索空间
    meta_ratio_range = [0.05, 0.1, 0.15, 0.2, 0.25]
    threshold_range = [0.1, 0.2, 0.3, 0.4, 0.5]
    
    best_params = {
        'meta_ratio': None,
        'threshold': None,
        'accuracy': .0,
        'model': None
    }
    
    print("\n=== Training MetaMax ===")
    for meta_ratio in meta_ratio_range:
        print(f"\nTesting MetaMax with meta_ratio={meta_ratio}")
        metamax = MetaMax(num_classes=20, meta_ratio=meta_ratio)
        metamax.fit(features, labels)
        
        for threshold in threshold_range:
            overall_acc, known_acc, unknown_acc = evaluate_metamax(
                metamax, model, val_loader, device, threshold=threshold, verbose=False
            )
            
            if overall_acc > best_params['accuracy']:
                best_params.update({
                    'meta_ratio': meta_ratio,
                    'threshold': threshold,
                    'accuracy': overall_acc,
                    'model': metamax
                })
                if overall_acc > 90.0:
                    print(f"\nNew best MetaMax parameters found:")
                    print(f"Meta Ratio: {meta_ratio}")
                    print(f"Threshold: {threshold}")
                    print(f"Overall Accuracy: {overall_acc:.2f}%")
                    print(f"Known Classes Accuracy: {known_acc:.2f}%")
                    print(f"Unknown Class Accuracy: {unknown_acc:.2f}%")
    
    return best_params

if __name__ == '__main__':
    # 准备数据和模型
    model, train_loader, val_loader, device = prepare_data_and_model(model_path='models/resnet50_99.92.pth', model_type='resnet50', batch_size=128)
    
    # 收集特征
    features, labels = collect_features(model, train_loader, device, return_logits=False)
    
    # 训练OpenMax
    best_openmax_params = train_openmax(features, labels, model, val_loader, device)
    print("\nSaving OpenMax model...")
    pprint(best_openmax_params)
    torch.save(best_openmax_params['model'], f'models/resnet50_openmax_{best_openmax_params["accuracy"]:.2f}.pth')
    print(f"OpenMax model saved to models/resnet50_openmax_{best_openmax_params['accuracy']:.2f}.pth")

    # 训练MetaMax
    # best_metamax_params = train_metamax(features, labels, model, val_loader, device)
    # print("\nSaving MetaMax model...")
    # pprint(best_metamax_params)
    # torch.save(best_metamax_params['model'], 'models/best_metamax.pth')
    # print(f"MetaMax model saved to models/best_metamax.pth")