File size: 9,917 Bytes
a821f69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import numpy as np
import itertools
import random
from make_env import GridWorldEnv
from concurrent.futures import ProcessPoolExecutor

class Algorithm_Agent():
    def __init__(self, num_categories, grid_size, grid, loc):
        self.num_categories = num_categories
        self.grid_size = grid_size
        self.grid = grid
        self.current_loc = [loc[0], loc[1]]
        self.path, self.path_category = self.arrange_points()
        # print('Path generated.')
        self.actions = self.plan_action()
        # print('Actions generated.')
    
    def calculate_length(self, path, category_path, elim_path):
        lengths = np.sum(np.abs(np.array(path[:-1]) - np.array(path[1:])), axis=1)
        motion_length = np.sum(lengths)  # motion path
        cum_lengths = np.cumsum(lengths)[::-1] / 14.4  # cumulative length
        load_length = np.sum(cum_lengths) - 4 * np.sum(np.array(cum_lengths) * np.array(elim_path[:-1]))
        
        return motion_length + load_length


    def get_elim_path(self, category_path):
        elim_path = [0] * len(category_path)
        for i in range(len(category_path)):
            if i > 0:
                previous_caterogy_path = category_path[:i]
                # 统计previous_caterogy_path中,与category_path[i]同一类别的元素的个数
                same_category_count = previous_caterogy_path.count(category_path[i])
                if (same_category_count + 1) % 4 == 0 and same_category_count != 0:
                    elim_path[i] = 1
        return elim_path


    def find_shortest_path(self, points):
        min_path = None
        min_length = float('inf')
        for perm in itertools.permutations(points):
            perm = np.array(perm)  # 转换为numpy数组
            # 简化计算方式
            diffs = np.abs(perm[1:] - perm[:-1])
            length = np.sum(diffs)
            if length < min_length:
                min_length = length
                min_path = perm.tolist()
        return min_path, min_length

    def insert_point(self, path, category_path, elim_path, point, category):
        min_length = float('inf')
        best_position = None
        for i in range(len(path) + 1):
            new_path, new_category_path = path.copy(), category_path.copy()
            new_path.insert(i, point)
            new_category_path.insert(i, category)
            new_elim_path = self.get_elim_path(new_category_path)
            if len(new_path) > 12:
                a=1       
            length = self.calculate_length(new_path, new_category_path, new_elim_path)
            if length < min_length:
                min_length = length
                best_position = i
        return best_position

    def try_single_optimization(self, args):
        """

        将函数改造为接收单个参数的形式,便于进程池调用

        """
        path, category_path = args
        path = path.copy()
        category_path = category_path.copy()
        
        # 随机选择一个点
        index = random.randint(0, len(path) - 1)
        point = path.pop(index)
        category = category_path.pop(index)
        
        # 尝试重新插入
        elim_path = self.get_elim_path(category_path)
        position = self.insert_point(path, category_path, elim_path, point, category)
        
        # 插入到最优位置
        path.insert(position, point)
        category_path.insert(position, category)
        
        return (path, category_path, 
                self.calculate_length(path, category_path, self.get_elim_path(category_path)))

    def optimize_path_parallel(self, initial_path, initial_category_path, num_iterations=1000):
        """

        新增的并行优化函数

        """
        chunk_size = 125
        num_processes = num_iterations // chunk_size

        # 准备参数
        args_list = [(initial_path.copy(), initial_category_path.copy()) 
                    for _ in range(num_iterations)]
        
        best_path, best_category_path = initial_path.copy(), initial_category_path.copy()
        best_length = float('inf')
        
        # 使用进程池
        with ProcessPoolExecutor(max_workers=num_processes) as executor:
            # 并行执行优化
            results = list(executor.map(self.try_single_optimization, 
                                    args_list, 
                                    chunksize=chunk_size))
            
            # 找出最佳结果
            for path, category_path, length in results:
                if length < best_length:
                    best_length = length
                    best_path = path
                    best_category_path = category_path
        
        return best_path, best_category_path

    def arrange_points(self):
        points_by_category = {i: [] for i in random.sample(range(self.num_categories), self.num_categories)}  # Group points by category
        for x in range(self.grid_size[0]):
            for y in range(self.grid_size[1]):
                category = self.grid[x, y]
                if category != -1:
                    points_by_category[category].append([x, y])  # Store the position of the item

        path = []  # Initialize the path
        category_path = []
        for category, points in points_by_category.items():  # Process each category
            while points:  # Process all points in the category
                if len(points) >= 4:  # If there are at least 4 points, find the shortest path for the first 4 points
                    subset = points[:4]
                    points = points[4:]
                else:
                    subset = points
                    points = []

                if len(path) == 0:  # If the path has only the loc, find the shortest path for the subset
                    path, _ = self.find_shortest_path(subset)
                    category_path = [category] * len(path)
                else:
                    for point in subset:
                        elim_path = self.get_elim_path(category_path)
                        position = self.insert_point(path, category_path, elim_path, point, category)
                        path.insert(position, point)
                        category_path.insert(position, category)

            # print(f'category: {category}, category_path: {category_path}\n')
        # # 排列好第一轮后,再次调整顺序
        # # 从序列中随机剔除一个元素,然后插入到其他位置,使得路径长度最短
        # for i in range(1000):
        #     index = random.randint(0, len(path) - 1)
        #     point = path.pop(index)
        #     category = category_path.pop(index)
        #     elim_path = self.get_elim_path(category_path)
        #     position = self.insert_point(path, category_path, elim_path, point, category)
        #     path.insert(position, point)
        #     category_path.insert(position, category)
            
        # 使用并行优化替换原来的循环
        path, category_path = self.optimize_path_parallel(path, category_path)
        
        return path, category_path
    
    def plan_action(self):
        actions = []
        for i in range(len(self.path)):
            while self.current_loc[0] != self.path[i][0] or self.current_loc[1] != self.path[i][1]:
                if self.current_loc[0] < self.path[i][0]:
                    actions.append(0)
                    self.current_loc = [self.current_loc[0] + 1, self.current_loc[1]]
                elif self.current_loc[1] < self.path[i][1]:
                    actions.append(1)
                    self.current_loc = [self.current_loc[0], self.current_loc[1] + 1]
                elif self.current_loc[0] > self.path[i][0]:
                    actions.append(2)
                    self.current_loc = [self.current_loc[0] - 1, self.current_loc[1]]
                else:
                    actions.append(3)
                    self.current_loc = [self.current_loc[0], self.current_loc[1] - 1]
            actions.append(4)
        # print(f'actions: {actions}\n')
        return actions

def search(grid, loc, pred_grid, pred_loc, num_iterations=30):
    env = GridWorldEnv()
    optim_actions, optim_reward = None, 0
    for i in range(num_iterations):
        env.reset()
        env.grid, env.loc = grid.copy(), loc.copy()
        agent = Algorithm_Agent(env.num_categories, env.grid_size, pred_grid, pred_loc)
        cumulated_reward = 0
        for action in agent.actions:
            obs, reward, done, truncated, info = env.step(action)
            cumulated_reward += reward
        if cumulated_reward > optim_reward:
            optim_actions, optim_reward = agent.actions, cumulated_reward
        print(f'{i}:', cumulated_reward)
    print(f'Optim reward: {optim_reward}')
    return optim_actions


if __name__ == "__main__":
    for _ in range(20):
        test_env = GridWorldEnv()
        test_env.reset()
        grid, loc = test_env.grid.copy(), test_env.loc.copy()
        pred_grid, pred_loc = test_env.grid.copy(), test_env.loc.copy()
        loc_1, loc_2, loc_3, loc_4, loc_5 = random.sample(range(12), 2), random.sample(range(12), 2), random.sample(range(12), 2), random.sample(range(12), 2), random.sample(range(12), 2)
        a, b, c, d, e = pred_grid[loc_1[0], loc_1[1]], pred_grid[loc_2[0], loc_2[1]], pred_grid[loc_3[0], loc_3[1]], pred_grid[loc_4[0], loc_4[1]], pred_grid[loc_5[0], loc_5[1]]
        pred_grid[loc_1[0], loc_1[1]], pred_grid[loc_2[0], loc_2[1]], pred_grid[loc_3[0], loc_3[1]], pred_grid[loc_4[0], loc_4[1]], pred_grid[loc_5[0], loc_5[1]] = b, e, a, c, d
        search(grid, loc, pred_grid, pred_loc)  # 使用5格混淆的grid进行搜索