File size: 4,619 Bytes
63eca6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import torch
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
import seaborn as sns
import umap
import os
from post_train import collect_features, prepare_data_and_model

def visualize_features(features, labels, method='tsne', save_path=None, include_unknown=False):
    """

    可视化特征分布

    

    Args:

        features: torch.Tensor, 特征向量

        labels: torch.Tensor, 标签

        method: str, 'tsne' 或 'umap'

        save_path: str, 保存路径,如果为None则显示图像

        include_unknown: bool, 是否包含未知类(第21类)

    """
    # 转换为numpy数组
    features = features.cpu().numpy()
    labels = labels.cpu().numpy()
    
    # 降维
    print(f"Performing {method.upper()} dimensionality reduction...")
    if method.lower() == 'tsne':
        reducer = TSNE(n_components=2, random_state=42)
        embedded = reducer.fit_transform(features)
    else:  # umap
        reducer = umap.UMAP(n_components=2, random_state=42)
        embedded = reducer.fit_transform(features)
    
    # 清理之前的图像状态并创建新图形
    plt.close('all')  # 关闭所有图形
    fig = plt.figure(figsize=(15, 10))
    
    # 定义标记样式和颜色
    markers = ['o', 's', '^', 'D']  # 圆形、方形、三角形、菱形
    colors = ['#FF4B4B', '#4B4BFF', '#4BFF4B', '#FFB74B', '#B74BFF']  # 红、蓝、绿、橙、紫
    
    # 确定要绘制的类别数量
    num_classes = 21 if include_unknown else 20
    
    # 为每个类别分配标记和颜色
    for i in range(num_classes):
        marker_idx = i % len(markers)
        color_idx = i % len(colors)
        
        mask = labels == i
        if i == 20:  # 未知类使用特殊标记
            plt.scatter(
                embedded[mask, 0],
                embedded[mask, 1],
                c='gray',  # 使用灰色
                marker='*',  # 使用星形
                s=150,  # 稍微大一点
                alpha=0.6,
                label='Unknown',
                edgecolors='white',
                linewidth=0.5
            )
        else:
            plt.scatter(
                embedded[mask, 0],
                embedded[mask, 1],
                c=colors[color_idx],
                marker=markers[marker_idx],
                s=100,
                alpha=0.6,
                label=f'Class {i}',
                edgecolors='white',
                linewidth=0.5
            )
    
    plt.grid(True, linestyle='--', alpha=0.7)
    plt.title(f'Feature Distribution ({method.upper()})', fontsize=14, pad=20)
    
    # 调整图例
    plt.legend(bbox_to_anchor=(1.05, 1), 
            loc='upper left', 
            borderaxespad=0,
            ncol=1,  # 使用单列显示图例
            fontsize=10)
    
    # 调整布局
    plt.tight_layout()
    
    # 先保存再显示
    if save_path:
        print(f"Saving plot to {save_path}")
        os.makedirs(os.path.dirname(save_path), exist_ok=True)
        plt.savefig(save_path, bbox_inches='tight', dpi=300, pad_inches=0.5)
    
    plt.show()
    plt.close()


if __name__ == "__main__":
    # 设置设备
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"Using device: {device}")
    
    model, train_loader, val_loader, device = prepare_data_and_model(model_path='models/resnet50_99.92.pth', model_type='resnet50', batch_size=128)
    
    ## 加载特征
    print("Collecting features of training set...")
    features, labels = collect_features(
        model=model,
        loader=train_loader,
        device=device
    )
    
    print("Collecting features of validation set...")
    val_features, val_labels = collect_features(
        model=model,
        loader=val_loader,
        device=device
    )
    # 可视化特征
    # print("Visualizing features using t-SNE...")
    # visualize_features(
    #     features=features,
    #     labels=labels,
    #     method='tsne',
    #     save_path='outputs/tsne_features.png'
    # )
    
    print("Visualizing features using UMAP...")
    visualize_features(
        features=features,
        labels=labels,
        method='umap',
        save_path='outputs/resnet50_train_FeatureMap.png',
        include_unknown=False
    )
    
    visualize_features(
        features=val_features,
        labels=val_labels,
        method='umap',
        save_path='outputs/resnet50_val_FeatureMap.png',
        include_unknown=True
    )