Facepalm0's picture
Upload search.py with huggingface_hub
16e53c1 verified
raw
history blame
12 kB
from make_env import GridWorldEnv
import matplotlib.pyplot as plt
import numpy as np
import itertools
import random
import concurrent.futures
# np.random.seed(0)
class Algorithm_Agent():
def __init__(self, num_categories, grid_size, grid, probs, loc):
self.num_categories = num_categories
self.grid_size = grid_size
self.grid = grid
self.probs = probs
self.loc = loc
self.current_loc = [loc[0], loc[1]]
self.path, self.path_category = self.arrange_points()
self.actions = self.plan_action()
def calculate_length(self, paths, elim_paths, prob_paths):
# 计算路径长度, 输入:所有路径paths=np.array((N, L, 2)),所有消除路径elim_paths=np.array((N, L))
lengths = np.sum(np.abs(np.array(paths[:, :-1]) - np.array(paths[:, 1:])), axis=-1) +1 # lengths=np.array((N, L-1))
motion_length = np.sum(lengths, axis=-1) + np.sum(np.abs(self.loc - paths[:, 0]), axis=-1) +1 # motion_length=np.array((N,))
cum_lengths = np.flip(np.cumsum(np.flip(lengths), axis=-1)) / 14.4 # cum_lengths=np.array((N, L-1))
# cum_lengths = np.cumsum(lengths, axis=-1)[:, ::-1] / 14.4 # cum_lengths=np.array((N, L-1))
load_length = np.sum(cum_lengths, axis=-1) - 4 * np.sum(np.array(cum_lengths) * np.array(elim_paths[:, :-1]), axis=-1) # elim_paths的最后一项不参与计算
prob_length = np.sum(np.arange(len(prob_paths[-1])) * prob_paths)# 用于提升鲁棒性,对较早收集置信度低的网格进行惩罚
return motion_length + load_length + 0.0 * prob_length
def get_elim_path(self, category_paths):
# 获取消除路径,输入:所有路径category_paths=np.array((N, L))
elim_path = np.zeros_like(category_paths)
for i in range(category_paths.shape[1]):
if i > 0:
previous_caterogy_path = category_paths[:, :i]
# 统计previous_caterogy_path中,与category_paths[i]同一类别的元素的个数
same_category_count = np.sum(previous_caterogy_path == category_paths[:, i:i+1], axis=-1)
elim_path[:, i] = (same_category_count + 1) % 4 == 0
return elim_path
def find_shortest_path(self, points):
min_path = None
min_length = float('inf')
for perm in itertools.permutations(points): # Try all permutations
length = sum(np.sum(np.abs(np.array(perm[i]) - np.array(perm[i + 1]))) for i in range(len(perm) - 1))
if length < min_length:
min_length = length
min_path = list(perm)
return min_path, min_length
def insert_point(self, path, category_path, prob_path, point, category, prob):
min_length = float('inf')
best_position = range(len(path) + 1)
# 将point插入到path的各个位置,合并为一个矩阵np.array((N, L, 2)),L为path的长度
new_path = np.zeros((len(best_position), len(path) + 1, 2))
new_category_path = np.zeros((len(best_position), len(path) + 1))
new_prob_path = np.zeros((len(best_position), len(path) + 1))
for i in range(len(best_position)):
new_path[i] = np.insert(path, best_position[i], point, axis=0)
new_category_path[i] = np.insert(category_path, best_position[i], category, axis=0)
new_prob_path[i] = np.insert(prob_path, best_position[i], prob, axis=0)
new_elim_path = self.get_elim_path(new_category_path) # 获取消除路径
# 计算路径长度
lengths = self.calculate_length(new_path, new_elim_path, new_prob_path)
min_length = np.min(lengths)
best_position = np.argmin(lengths)
return best_position, min_length
def arrange_points(self):
points_by_category = {i: [] for i in random.sample(range(self.num_categories), self.num_categories)} # 将所有点按类别分组
for x in range(self.grid_size[0]):
for y in range(self.grid_size[1]):
category = self.grid[x, y]
if category != -1:
points_by_category[category].append([x, y])
path, category_path, prob_path, rewards_his = [], [], [], []
for category, points in points_by_category.items(): # 第一轮排列,按类别处理
while points:
if len(points) >= 4:
subset = points[:4]
points = points[4:]
else:
subset = points
points = []
if len(path) == 0:
path, _ = self.find_shortest_path(subset)
category_path = [category] * len(path)
prob_path = [self.probs[point[0], point[1]] for point in path]
else:
for point in subset:
position, length = self.insert_point(path, category_path, prob_path, point, category, self.probs[point[0], point[1]])
path.insert(position, point)
category_path.insert(position, category)
prob_path.insert(position, self.probs[point[0], point[1]])
# 排列好第一轮后,再次调整顺序
# 从序列中随机剔除一个元素,然后插入到其他位置,使得路径长度最短
for i in range(1000):
index = np.random.randint(0, 144)
point = path.pop(index)
category = category_path.pop(index)
prob = prob_path.pop(index)
position, length = self.insert_point(path, category_path, prob_path, point, category, prob)
path.insert(position, point)
category_path.insert(position, category)
prob_path.insert(position, prob)
rewards_his.append(100 + 36 - length / 10)
self.cumulated_reward = rewards_his[-1]
# plt.plot(rewards_his)
# plt.show()
return path, category_path
def plan_action(self):
actions = []
for i in range(len(self.path)):
while self.current_loc[0] != self.path[i][0] or self.current_loc[1] != self.path[i][1]:
if self.current_loc[0] < self.path[i][0]:
actions.append(0)
self.current_loc = [self.current_loc[0] + 1, self.current_loc[1]]
elif self.current_loc[1] < self.path[i][1]:
actions.append(1)
self.current_loc = [self.current_loc[0], self.current_loc[1] + 1]
elif self.current_loc[0] > self.path[i][0]:
actions.append(2)
self.current_loc = [self.current_loc[0] - 1, self.current_loc[1]]
else:
actions.append(3)
self.current_loc = [self.current_loc[0], self.current_loc[1] - 1]
actions.append(4)
# print(f'actions: {actions}\n')
return actions
def adjust_grid(predictions, openmax_probs):
# 统计每个类别的数量
class_counts = np.bincount(predictions, minlength=21)
# 处理数量为1的类别
for category in range(20):
if class_counts[category] % 4 == 1:
# 找出该类别的样本
category_indices = np.where(predictions == category)[0]
if len(category_indices) == 0:
continue
# 在该类别中找出概率最小的样本
category_probs = openmax_probs[category_indices, category]
worst_idx = category_indices[np.argmin(category_probs)]
# 找出该样本在其他类别中概率最大的类别
other_probs = openmax_probs[worst_idx]
other_probs[category] = -1 # 排除当前类别
new_category = np.argmax(other_probs)
# 更新计数
class_counts[category] -= 1
class_counts[new_category] += 1
# 将其转换为新类别
predictions[worst_idx] = new_category
# 处理数量为2的类别
for category in range(20):
if class_counts[category] % 4 == 2:
# 找出所有不属于当前类别的样本索引
for j in range(2):
other_indices = np.where(predictions != category)[0]
if len(other_indices) == 0:
continue
# 在其他所有样本中找出对当前类别概率最高的样本
category_probs = openmax_probs[other_indices, category]
best_idx = other_indices[np.argmax(category_probs)]
# 更新计数
class_counts[predictions[best_idx]] -= 1
class_counts[category] += 1
# 将其转换为当前类别
predictions[best_idx] = category
# 处理数量为3的类别
for category in range(20):
if class_counts[category] % 4 == 3:
# 找出所有不属于当前类别的样本索引
other_indices = np.where(predictions != category)[0]
if len(other_indices) == 0:
continue
# 在其他所有样本中找出对当前类别概率最高的样本
category_probs = openmax_probs[other_indices, category]
best_idx = other_indices[np.argmax(category_probs)]
# 更新计数
class_counts[predictions[best_idx]] -= 1
class_counts[category] += 1
# 将其转换为当前类别
predictions[best_idx] = category
probs = openmax_probs[np.arange(144), predictions]
return predictions.reshape(12, 12), probs.reshape(12, 12)
def search_once(grid, probs, loc):
agent = Algorithm_Agent(21, (12, 12), grid, probs, loc)
return agent.actions, agent.cumulated_reward
# 使用 ProcessPoolExecutor 并行运行 40 个 search_once 函数
def search(grid, probs, loc, num_iterations=60):
with concurrent.futures.ProcessPoolExecutor(max_workers=num_iterations) as executor:
futures = [executor.submit(search_once, grid.copy(), probs.copy(), loc.copy()) for _ in range(num_iterations)]
results = [future.result() for future in concurrent.futures.as_completed(futures)]
# 选择最优的结果
# for i, result in enumerate(results):
# if i % 5 == 0:
# print(f"Iteration {i}: {result[1]}")
optim_actions, optim_reward = max(results, key=lambda x: x[1])
# 在env中测试optim_actions
env = GridWorldEnv()
cumulated_reward = 0
env.reset()
env.grid, env.loc = grid.copy(), loc.copy()
for action in optim_actions:
obs, reward, done, truncated, info = env.step(action)
cumulated_reward += reward
print(f'Final reward: {cumulated_reward}')
return optim_actions
if __name__ == "__main__":
for _ in range(1):
test_env = GridWorldEnv()
test_env.reset()
grid, loc = test_env.grid.copy(), test_env.loc.copy()
pred_grid, pred_loc = test_env.grid.copy(), test_env.loc.copy()
loc_1, loc_2, loc_3, loc_4, loc_5 = random.sample(range(12), 2), random.sample(range(12), 2), random.sample(range(12), 2), random.sample(range(12), 2), random.sample(range(12), 2)
a, b, c, d, e = pred_grid[loc_1[0], loc_1[1]], pred_grid[loc_2[0], loc_2[1]], pred_grid[loc_3[0], loc_3[1]], pred_grid[loc_4[0], loc_4[1]], pred_grid[loc_5[0], loc_5[1]]
pred_grid[loc_1[0], loc_1[1]], pred_grid[loc_2[0], loc_2[1]], pred_grid[loc_3[0], loc_3[1]], pred_grid[loc_4[0], loc_4[1]], pred_grid[loc_5[0], loc_5[1]] = b, e, a, c, d
search(grid, loc, grid, loc) # 使用5格混淆的grid进行搜索