{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x00000185FE982B90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x00000185FE982C20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x00000185FE982CB0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x00000185FE982D40>", "_build": "<function ActorCriticPolicy._build at 0x00000185FE982DD0>", "forward": "<function ActorCriticPolicy.forward at 0x00000185FE982E60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x00000185FE982EF0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x00000185FE982F80>", "_predict": "<function ActorCriticPolicy._predict at 0x00000185FE983010>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x00000185FE9830A0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x00000185FE983130>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x00000185FE9831C0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x00000185FD6EC380>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1706111877215863700, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAApy716MLc/xc3Jvvv5kL49GgW+7Dy9vQAAAAAAAAAAZi8vvY/+Jro79hc6Z0OmtVNIybtoFTK5AACAPwAAgD+aPqK8UPK7PyKXnL71jbc+OW4/u2qG170AAAAAAAAAAGbuwb06ZpU/aq2/vtEFFb8iJhe+jTQgvgAAAAAAAAAAwxONPnJQZj8f0hA+ID8Kvznhoz74nm29AAAAAAAAAADAU4I9kdMlP3k4gj1Kfeu+q3WZPWiU2LwAAAAAAAAAALOvCb4VgHM+z2SvPrulxb6/9H86wo5UPgAAAAAAAAAA+hUSvuAvjj54654+Sb+4viqCWLuG0+M9AAAAAAAAAACzRrW99phRPb7VwD3bxVm+cV1APeVgBD0AAAAAAAAAAIB4Z70aSqw/+mwsv8sS6L6T5ZI8D7TFvQAAAAAAAAAA5vj1PcApkT6edQq+y2SKvl6+1z2KnYe9AAAAAAAAAABz/6S97EHPuRtkcLxj6CQ2rDzuukAgmLUAAAAAAAAAAGa+3b21Nxw+rT4FP5amcr4o4hU+cTMYPgAAAAAAAAAAZnWWPLixtz8BZrQ+rUYmPiMXrbsJoDI9AAAAAAAAAACaloY8LoOsPyMbnj6fXx2/Pq8sOuJLpz0AAAAAAAAAAABNCT63w0o/fW8MPuKeD7+/sjM+u+nvOgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGC7Q5WBBmMAWyUS7qMAXSUR0CZt07DEWIodX2UKGgGR0ByMuJpFkQPaAdL2WgIR0CZt2VKPGQ0dX2UKGgGR0By/DeEZiuuaAdL3mgIR0CZt/c580DVdX2UKGgGR0Bx8XCFbmlqaAdL+2gIR0CZuFHSWqtHdX2UKGgGR0BzrGZG8VYZaAdNHwFoCEdAmbiG3KB/Z3V9lChoBkdAbxzZrYXfqGgHS/BoCEdAmbiprYXfqHV9lChoBkdAbxG40dilSGgHS9ZoCEdAmbjmi+L3sXV9lChoBkdAcgOLCvX9SGgHS8BoCEdAmbjttuUD+3V9lChoBkdAcrFtG/etS2gHS/JoCEdAmbllBdD6WXV9lChoBkdAc27QT238XWgHS8toCEdAmbm3Dm8ujHV9lChoBkdAcq9qN6w+uGgHS99oCEdAmbnUwN9YwXV9lChoBkdAc2jeF+NLlGgHS8JoCEdAmbngBDG96HV9lChoBkdAcQ4KFqSHM2gHS/ZoCEdAmbnnLzPKMnV9lChoBkdAcmfkP+XJHWgHS89oCEdAmbnmKQ7tA3V9lChoBkdAc4kfWMCLdmgHTQ4BaAhHQJm6ElqrR0F1fZQoaAZHQHBH5k078vVoB01CAWgIR0CZuhmFajesdX2UKGgGR0BwKECo0hvBaAdLv2gIR0CZunn5i3G5dX2UKGgGR0BvzBFLFn7IaAdL7mgIR0CZuoMwlByCdX2UKGgGR0BzRcIomXw9aAdNqAJoCEdAmbrXUYsND3V9lChoBkdAcWkCCSRr8GgHS8toCEdAmbrx8UmD2HV9lChoBkdAcLBeVs1sL2gHS7loCEdAmbtD987ZF3V9lChoBkdAclefb9If82gHS9BoCEdAmbtTU7Sy+3V9lChoBkdAccNDKYAsCmgHS8doCEdAmbtzEit7r3V9lChoBkdAb/tci4axYGgHS/toCEdAmbu6QFLWZ3V9lChoBkdAcXoDe0ojOmgHS81oCEdAmbv8S5AhS3V9lChoBkdAcKXzT4L1EmgHS7toCEdAmbw1xffGdnV9lChoBkdAbe2A+Y+jd2gHS8VoCEdAmbxFHjIaLnV9lChoBkdAbs5Y8Md92GgHS8RoCEdAmbxTdDYywnV9lChoBkdActOWsijcmGgHS9ZoCEdAmbyEGqxTsXV9lChoBkdAcuZuuieum2gHS+JoCEdAmbyFINEw4HV9lChoBkdAcgVt2cJ+lWgHS+hoCEdAmbzpSBK+SXV9lChoBkdAcTxBInSfDmgHS+poCEdAmbz4InjQzHV9lChoBkdAcZB28qWkamgHS+ZoCEdAmb1PsNUfgnV9lChoBkdAcZoC6pYLcGgHS+doCEdAmb1dAHE/B3V9lChoBkdAcPluOCGvfWgHS8JoCEdAmb2qtHQQc3V9lChoBkdAcFMLXL/0d2gHS75oCEdAmb2uzMRpUXV9lChoBkdAb3GfQrtmc2gHS+BoCEdAmb24BFNL13V9lChoBkdAckLGZNO/L2gHS+1oCEdAmb3HmvGIbnV9lChoBkdAcgYSJCSid2gHS9VoCEdAmb4XiaRZEHV9lChoBkdAcaNBuXNTtWgHS7loCEdAmb4/eP7vX3V9lChoBkdAcvb4u9OARWgHS8VoCEdAmb7BsuWa+nV9lChoBkdAcCaHiFTNuGgHTQEBaAhHQJm+7DR+jM51fZQoaAZHQHDsL0nPVutoB0vjaAhHQJm/Bc8kleF1fZQoaAZHQHJgE1uR9w5oB0vyaAhHQJm/SpDNQj51fZQoaAZHQHEZCgPEsJ9oB0vjaAhHQJm/00elsP91fZQoaAZHQHN5VRpDeCVoB00DAWgIR0CZv9JBgNPQdX2UKGgGR0BzUzP4VRDUaAdL42gIR0CZv+CXhOxjdX2UKGgGR0BxV6VgQYk3aAdL02gIR0CZwAzmOlwcdX2UKGgGR0BxmJRiw0O3aAdNIAFoCEdAmcA6+rU9ZHV9lChoBkdAcpaVM23rlmgHS8FoCEdAmcBBH5Jsf3V9lChoBkdAcbb3OfNA1WgHS8poCEdAmcBSiAUcn3V9lChoBkdAdAhEb5uZTmgHS9hoCEdAmcCBIe5nUXV9lChoBkdAcqoxtpEhJWgHS/FoCEdAmcCAG8mKInV9lChoBkdAcMAhnanJk2gHS81oCEdAmcDyS/0ulHV9lChoBkdAcvTMHKOktWgHS/loCEdAmcEAoXsPa3V9lChoBkdAcpQh8IAwPGgHS+hoCEdAmcEeU6gdwXV9lChoBkdAcKdLgXMyJ2gHS79oCEdAmcF+yquKXXV9lChoBkdAcH9hfBvaUWgHS9xoCEdAmcGXXqZ+hHV9lChoBkdAcQlxhUipvWgHS95oCEdAmcHE4JeE7HV9lChoBkdAchbJDVpblmgHS9NoCEdAmcH8LSeAeHV9lChoBkdAcl5dZ7ojfWgHS8toCEdAmcJcLBsQ/XV9lChoBkdAcama37UG3WgHS9RoCEdAmcJ47Rv3rXV9lChoBkdAcwHDSPU8WGgHS+ZoCEdAmcLFum78N3V9lChoBkdAcxqtTkyULWgHS95oCEdAmcLTjrAxjHV9lChoBkdAcNAO8kD6nGgHS9doCEdAmcLk+C9RJnV9lChoBkdAbzD0/4ZdfWgHS9FoCEdAmcLpEMLF43V9lChoBkdAcdA1jiGWU2gHS9BoCEdAmcMUo8ZDRnV9lChoBkdAcoRbbDdgv2gHS+9oCEdAmcM3dTHbRHV9lChoBkdAbnj0qYqoZWgHS+loCEdAmcNiiqQzUXV9lChoBkdAcJKQZXMhYGgHS9doCEdAmcOY0Q9RrXV9lChoBkdAcM3EhaC+UWgHS9JoCEdAmcOzdDYywnV9lChoBkdAc8VsD4gzQGgHS+xoCEdAmcPkmx+rl3V9lChoBkdAcLAuvUz9CWgHS8loCEdAmcQRKYiPhnV9lChoBkdAcYkK/VRUFWgHS9JoCEdAmcRfJaJQ+HV9lChoBkdAcvbjwQUYbmgHS+poCEdAmcRiOBDohnV9lChoBkdAcX6tEG7jDWgHS9hoCEdAmcSnWJ79h3V9lChoBkdAcxqbhWHUMGgHS9poCEdAmcUQ5R0lq3V9lChoBkdAcRtXcQAdXGgHS81oCEdAmcVUlAu7H3V9lChoBkdAcOFJ5E+gUWgHS81oCEdAmcV3ZPEbYXV9lChoBkdAcz2ua4MF2WgHS9NoCEdAmcWIzSCvo3V9lChoBkdAcqzfozN2T2gHS9poCEdAmcWP+GXXy3V9lChoBkdAcx5lMh5gPWgHS/hoCEdAmcWcQqZtvXV9lChoBkdAcRWSntOVPmgHS+JoCEdAmcXokmhM8HV9lChoBkdAcEU/zreImGgHS85oCEdAmcX5+6RQrXV9lChoBkdAcWrUHIIWxmgHS+loCEdAmcYhacI7eXV9lChoBkdAcY2P3ztkWmgHS+BoCEdAmcaKAJ9iMHV9lChoBkdAby5zKcNH6WgHTQgBaAhHQJnG9pCa7Vd1fZQoaAZHQG4OWsq8UVVoB0voaAhHQJnHEPOIInl1fZQoaAZHQHJt7zkIX0poB00EAWgIR0CZxzt03fhudX2UKGgGR0BxNmSjgydnaAdL52gIR0CZx2FX7tRfdX2UKGgGR0Bv4mX1J17qaAdL8GgIR0CZx3rxiG34dX2UKGgGR0ByYzNJOFg2aAdLtWgIR0CZx992HLzPdX2UKGgGR0BuI+PmxMWXaAdLv2gIR0CZx+/Yao/BdX2UKGgGR0ByF4EW69TQaAdL5GgIR0CZyA6+nIhhdX2UKGgGR0Bxue8Djin6aAdLu2gIR0CZyHMuvlltdX2UKGgGR0BvRrxNIsiCaAdL8WgIR0CZyIB+nZTRdX2UKGgGR0Bw+78rI5o5aAdL6WgIR0CZyK+ZPVNIdX2UKGgGR0BxBNzS1E3LaAdL72gIR0CZyLbEP1+RdX2UKGgGR0BxV6waBI4EaAdL1GgIR0CZyLnWrfcfdX2UKGgGR0Bxev6sQumKaAdLwmgIR0CZyLrc0tROdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.99, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVaQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVGM6XFVzZXJzXEhhcnJ5XGFuYWNvbmRhM1xlbnZzXFJMXGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4RDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVaQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVGM6XFVzZXJzXEhhcnJ5XGFuYWNvbmRhM1xlbnZzXFJMXGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4RDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Windows-10-10.0.22621-SP0 10.0.22621", "Python": "3.10.13", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.26.3", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1"}} |