File size: 33,296 Bytes
67c3f86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
---
base_model: TaylorAI/bge-micro-v2
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1814
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: '

    The list you''ve provided contains a variety of medications, including antidepressants,
    antihistamines, anxiolytics, and more. Here''s a breakdown by category:


    ### Antidepressants

    - **Amphetamine**

    - **Cevimeline**

    - **Esmolol**

    - **Bortezomib**

    - **'
  sentences:
  - Which body parts are associated with the expression of genes or proteins that
    impact the transporter responsible for the movement of Cycloserine?
  - Identify genes or proteins that interact with a protein threonine kinase, participate
    in the mitotic centrosome proteins and complexes recruitment pathway, and engage
    in protein-protein interactions with CCT2.
  - Which medication is effective against simple Plasmodium falciparum infections
    and functions by engaging with genes or proteins that interact with the minor
    groove of DNA rich in adenine and thymine?
- source_sentence: '

    RNASE6, also known by aliases such as RAD1, RNS6, and RNasek6, functions as a
    member of the ribonuclease A superfamily. Specifically identified via the NCBI
    gene/protein database, this protein is related to the antimicrobial peptides pathway,
    showcasing broad-spectrum antimicrobial activity against pathogenic bacteria in
    the urinary tract. The provided gene summary emphasizes its role in the urinary
    tract, highlighting its enzymatic function and broad antimicrobial capability.


    With a genomic position spanning from 20781268 to 20782467 on chromosome 14, the
    RNASE6 gene encodes a protein named ribonuclease A family member k6. The protein''s
    interactions with cellular and molecular functions are integral to its role, including
    its interaction with molecular functions like ribonuclease activity and endonuclease
    activity, as well as its involvement in nucleic acid binding.


    RNASE6''s involvement in biological'
  sentences:
  - Identify genes or proteins linked to encephalopathy that are involved in the Antimicrobial
    peptides pathway and have interactions with molecular functions associated with
    ribonuclease activity.
  - Identify genes or proteins that exhibit interaction with COMMD1 and share an associated
    phenotype or effect.
  - What medical conditions are associated with severe combined immunodeficiency and
    also cause muscle pain and weakness?
- source_sentence: '


    The gene in question is likely involved in multiple biological processes, including:


    1. **Transmembrane transport**: It facilitates the entry of substances into or
    out of a cell through the cell membrane, which is crucial for maintaining cellular
    homeostasis and responding to environmental stimuli. This includes organic anion
    and carboxylic acid transport.


    2. **ABC-family proteins mediated transport**: ABC (or ATP-binding cassette) proteins
    are responsible for a variety of transport processes, such as drug efflux, nutrient
    uptake, and xenobiotic detoxification.


    3. **Response to drug**: It likely plays a role in how cells interact with and
    respond to medication or other foreign substances they encounter. This is important
    in pharmacology and toxicology.


    4. **Regulation of chloride transport**: Chloride ions are crucial for maintaining
    electrolyte balance and are involved in multiple physiological processes. This
    gene likely helps regulate their transport in and out of the cell.


    5. **Export across plasma membrane**: It is part of pathways that help in the
    removal of substances from the cell, such as efflux of drug metabolites or other
    waste products.


    ### Expression Contexts:


    - **Present**: This gene is expressed in many parts of the body, indicating a
    broad role. It shows presence in tissues like the islet of Langerhans (involved
    in insulin regulation), zones of the skin, and various brain regions. It''s also
    active in organs such as the heart, kidney, and lungs, and in the digestive tract,
    including the stomach, esophagus, and intestines.


    - **Absent or Reduced**: The gene''s expression is notably absent or less pronounced
    in tissues like the nasal cavity epithelium, suggesting it may not play a significant
    role in this specific tissue type.


    The gene''s multifaceted expression and roles suggest a key function in biological
    activities related to:

    - **Chemical'
  sentences:
  - Could you supply a selection of medications used to treat acute myeloid leukemia
    with minimal differentiation that have a potential side effect of arrhythmias
    and work by intercalating DNA and inhibiting topoisomerase II?
  - Is the ABCB1 protein responsible for the translocation of pharmaceuticals that
    exhibit synergistic effects when combined with ferric ions?
  - What potential conditions could I have that are associated with oophoritis and
    involve ovarian complications?
- source_sentence: "\n\nThe list you provided seems to be a collection of various\
    \ chemical compounds, pharmaceuticals, and their synonyms. They span across various\
    \ categories:\n\n1. **Pharmaceuticals & Synthetic Drug Analogs**:\n    - **Antibiotics**\
    \ (Ceftazidime, Azithromycin, Ceftodipen, etc.)\n    - **Analgesics** (Fentanyl,\
    \ Ketorolac, etc.)\n    - **Cephalosporins** (Ceftazidime, Ceftazidime-avibactam,\
    \ etc.)\n    - **Blood Thinners/Synthetic Anticoagulants** (Enoxaparin, Edoxaban,\
    \ Rivaroxaban, etc.)\n    - **Analgesic/Aspirin Analogues** (Mefenamic Acid, Indometacin,\
    \ etc.)\n    - **Adrenergic Agonists** (Isoprenaline, Dopamine, etc.)\n    - **Antiviral\
    \ Drugs** (Adefovir, Idelalisib, etc.)\n    - **Antibiotic Resistance Modifiers**\
    \ (Sulbactam, Tazobactam, etc.)\n    - **Calcium Channel Blockers** (Verapamil,\
    \ Nicardipine, etc.)\n    - **Nutraceuticals/Herbal Extracts** (Ginsenoside, Phloretin,\
    \ etc.)\n   \n2. **Diagnostic Agents**:\n    - **Radiopharmaceuticals** (F-Fluorodeoxyglucose,\
    \ Ga-68 DOTATOC, etc.)\n    - **MRI Contrasts** (Gadolinium chelates, etc.)\n\
    \    - **CT Contrast Agents** (Iodinated contrast agents, etc.)\n   \n3. **Ingredients\
    \ in Drugs**:\n    - **Excipients** (Hydroxypropylmethylcellulose, Lactose, etc.)\n\
    \    - **Antifungal Drugs** (Itraconazole, Terconazole, etc.)\n    - **Anticoagulants**\
    \ (Warfarin, Heparin, etc.)\n        \nThis list represents a broad spectrum of\
    \ modern medicine, from antibiotics to chemicals used in diagnostic imaging techniques,\
    \ and from dietary supplements to drug excipients. Each compound typically serves\
    \ a specific therapeutic purpose in the human body."
  sentences:
  - Which investigational compound in solid form that aims at altering membrane lipids,
    specifically phospholipids and glycerophospholipids, has the additional property
    of interacting with genes or proteins involved in ubiquitin-specific protease
    binding?
  - Could you provide a list of medications that exhibit synergistic effects when
    used in combination with Choline magnesium trisalicylate to treat the same condition
    and that also selectively target COX-2 enzymes to alleviate inflammation?
  - Identify pathways associated with the interaction between TNFs and their physiological
    receptors that concurrently influence the same gene or protein.
- source_sentence: "\n\nDiarrhea, a condition characterized by the passage of loose,\
    \ watery, and often more than five times a day, is a common ailment affecting\
    \ individuals of all ages. It is typically acute when it lasts for a few days\
    \ to a week or recurrent when it persists for more than four weeks. While acute\
    \ diarrhea often resolves on its own and is usually not a cause for concern, recurrent\
    \ or chronic forms require medical attention due to the risk of dehydration and\
    \ nutrient deficiencies. \n\n### Causes\n\nDiarrhea can be caused by various factors,\
    \ including:\n\n1. **Viral"
  sentences:
  - Could you describe the specific effects or phenotypes associated with acute hydrops
    in patients with the subtype of keratoconus?
  - What is the disease associated with the CPT2 gene that causes severe fasting intolerance
    leading to metabolic disturbances such as hypoketotic hypoglycemia, risking coma
    and seizures, and can lead to hepatic encephalopathy and liver failure, and also
    affects the heart and skeletal muscles, increasing the risk of potentially fatal
    cardiac arrhythmias?
  - Could you assist in identifying a condition linked to congenital secretory diarrhea,
    similar to intractable diarrhea of infancy, given my symptoms of persistent, salty
    watery diarrhea, hyponatremia, abnormal body pH, and reliance on parenteral nutrition
    due to chronic dehydration?
model-index:
- name: SentenceTransformer based on TaylorAI/bge-micro-v2
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 384
      type: dim_384
    metrics:
    - type: cosine_accuracy@1
      value: 0.36633663366336633
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.45544554455445546
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.4801980198019802
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.504950495049505
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.36633663366336633
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.1518151815181518
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.09603960396039603
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.05049504950495049
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.36633663366336633
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.45544554455445546
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.4801980198019802
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.504950495049505
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4371640266541694
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4153524280999529
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.42164032403755497
      name: Cosine Map@100
---

# SentenceTransformer based on TaylorAI/bge-micro-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [TaylorAI/bge-micro-v2](https://huggingface.co/TaylorAI/bge-micro-v2) on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [TaylorAI/bge-micro-v2](https://huggingface.co/TaylorAI/bge-micro-v2) <!-- at revision 3edf6d7de0faa426b09780416fe61009f26ae589 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("FareedKhan/TaylorAI_bge-micro-v2_FareedKhan_prime_synthetic_data_2k_10_64")
# Run inference
sentences = [
    '\n\nDiarrhea, a condition characterized by the passage of loose, watery, and often more than five times a day, is a common ailment affecting individuals of all ages. It is typically acute when it lasts for a few days to a week or recurrent when it persists for more than four weeks. While acute diarrhea often resolves on its own and is usually not a cause for concern, recurrent or chronic forms require medical attention due to the risk of dehydration and nutrient deficiencies. \n\n### Causes\n\nDiarrhea can be caused by various factors, including:\n\n1. **Viral',
    'Could you assist in identifying a condition linked to congenital secretory diarrhea, similar to intractable diarrhea of infancy, given my symptoms of persistent, salty watery diarrhea, hyponatremia, abnormal body pH, and reliance on parenteral nutrition due to chronic dehydration?',
    'Could you describe the specific effects or phenotypes associated with acute hydrops in patients with the subtype of keratoconus?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_384`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.3663     |
| cosine_accuracy@3   | 0.4554     |
| cosine_accuracy@5   | 0.4802     |
| cosine_accuracy@10  | 0.505      |
| cosine_precision@1  | 0.3663     |
| cosine_precision@3  | 0.1518     |
| cosine_precision@5  | 0.096      |
| cosine_precision@10 | 0.0505     |
| cosine_recall@1     | 0.3663     |
| cosine_recall@3     | 0.4554     |
| cosine_recall@5     | 0.4802     |
| cosine_recall@10    | 0.505      |
| cosine_ndcg@10      | 0.4372     |
| cosine_mrr@10       | 0.4154     |
| **cosine_map@100**  | **0.4216** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 1,814 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                           | anchor                                                                              |
  |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                              |
  | details | <ul><li>min: 2 tokens</li><li>mean: 249.7 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 35.54 tokens</li><li>max: 135 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | anchor                                                                                                                                                                                                            |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code><br>The list you provided appears to be a collection of various substances and medications, each with its own unique properties and uses. Here's a brief overview of each:<br><br>1. **Abacavir**<br>   - Used in HIV treatment, it inhibits reverse transcriptase.<br><br>2. **Abate**<br>   - Often refers to fenpyroximate, used as an insecticide.<br><br>3. **Abidaquine**<br>   - An antimalarial drug used to treat and prevent malaria.<br><br>4. **Abiraterone**<br>   - Used in treating prostate cancer, specifically to block the production of testosterone.<br><br>5. **Abiraterone alfa**<br>   - Similar to abiraterone, used in prostate cancer treatment.<br><br>6. **Abiraterone acetate**<br>   - An active form of abiraterone.<br><br>7. **Abiraterone citrate**<br>   - Another form of abiraterone.<br><br>8. **Acelprozil**<br>   - A medication commonly used as an anti-epileptic drug.<br><br>9. **Acenocoumarol**<br>   - Used as a blood thinner, also known as a vitamin K antagonist.<br><br>10. **Acenocoumarol citrate**<br>    - Same as acenocoumarol but with citrate, functioning similarly as a</code>                                                                                                                                                                                                                           | <code>Which pharmacological agents with antioxidant properties have the potential to disrupt the PCSK9-LDLR interaction by affecting the gene or protein players in this pathway?</code>                          |
  | <code><br>Bartholin duct cyst is a gynecological condition characterized by the distension of Bartholin glands due to mucus accumulation within the ducts, typically resulting from an obstructed orifice. This issue, categorized under women's reproductive health, falls directly under the umbrella of both integumentary system diseases and female reproductive system diseases. Originating from the Bartholin glands, which play a pivotal role in lubrication and arousal of the vulva during intercourse, the blockage or obstruction leads to cyst formation, affecting the overall female reproductive health landscape.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <code>What is the name of the gynecological condition that arises due to blocked Bartholin's glands and involves cyst formation, falling under the broader category of women's reproductive health issues?</code> |
  | <code><br>Neuralgia, as defined by the MONDO ontology, refers to a pain disorder characterized by pain in the distribution of a nerve or nerves. This condition could be associated with the use of Capsaicin cream, given its known capability to alleviate symptoms by causing a temporary sensation of pain that interferes with the perception of more severe pain. Peripheral neuropathy, another symptom, is often manifest in cases where nerve damage occurs, frequently affecting multiple nerves. This condition can result in symptoms similar to sciatica, which is characterized by pain that starts in the lower back, often radiating down the leg, a common route for the sciatic nerve. The document indicates that diseases related to neuralgia include pudendal neuralgia, peripheral neuropathy, disorders involving pain, cranial neuralgia, post-infectious neuralgia, and sciatica. Furthermore, the document mentions several drugs that can be used for the purpose of managing symptoms related to neuralgia, including Lidocaine, as well as a wide array of off-label uses for treatments like Phenytoin, Morphine, Amitriptyline, Imipramine, Oxycodone, Nortriptyline, Lamotrigine, Maprotiline, Desipramine, Gabapentin, Carbamazepine, Phenobarbital, Tramadol, Venlafaxine, Trimipramine, Desvenlafaxine, Primidone, and Naltrexone.</code> | <code>What condition could be associated with the use of Capsaicin cream, peripheral neuropathy, and symptoms similar to sciatica?</code>                                                                         |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          384
      ],
      "matryoshka_weights": [
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 64
- `learning_rate`: 1e-05
- `num_train_epochs`: 10
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: False
- `load_best_model_at_end`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 1e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step    | Training Loss | dim_384_cosine_map@100 |
|:-------:|:-------:|:-------------:|:----------------------:|
| 0       | 0       | -             | 0.3737                 |
| 0.3448  | 10      | 2.4936        | -                      |
| 0.6897  | 20      | 2.4873        | -                      |
| 1.0     | 29      | -             | 0.3917                 |
| 1.0345  | 30      | 2.1624        | -                      |
| 1.3793  | 40      | 2.0774        | -                      |
| 1.7241  | 50      | 1.973         | -                      |
| 2.0     | 58      | -             | 0.4065                 |
| 2.0690  | 60      | 1.8545        | -                      |
| 2.4138  | 70      | 1.8635        | -                      |
| 2.7586  | 80      | 1.8483        | -                      |
| 3.0     | 87      | -             | 0.4167                 |
| 3.1034  | 90      | 1.764         | -                      |
| 3.4483  | 100     | 1.744         | -                      |
| 3.7931  | 110     | 1.8287        | -                      |
| 4.0     | 116     | -             | 0.4212                 |
| 4.1379  | 120     | 1.574         | -                      |
| 4.4828  | 130     | 1.6807        | -                      |
| 4.8276  | 140     | 1.7146        | -                      |
| 5.0     | 145     | -             | 0.4222                 |
| 5.1724  | 150     | 1.5898        | -                      |
| 5.5172  | 160     | 1.6352        | -                      |
| 5.8621  | 170     | 1.6344        | -                      |
| 6.0     | 174     | -             | 0.4183                 |
| 6.2069  | 180     | 1.5556        | -                      |
| 6.5517  | 190     | 1.6743        | -                      |
| 6.8966  | 200     | 1.5934        | -                      |
| 7.0     | 203     | -             | 0.4199                 |
| 7.2414  | 210     | 1.4956        | -                      |
| 7.5862  | 220     | 1.5644        | -                      |
| 7.9310  | 230     | 1.5856        | -                      |
| **8.0** | **232** | **-**         | **0.4215**             |
| 8.2759  | 240     | 1.4328        | -                      |
| 8.6207  | 250     | 1.6208        | -                      |
| 8.9655  | 260     | 1.57          | -                      |
| 9.0     | 261     | -             | 0.4216                 |
| 9.3103  | 270     | 1.6354        | -                      |
| 9.6552  | 280     | 1.5414        | -                      |
| 10.0    | 290     | 1.3757        | 0.4216                 |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.10
- Sentence Transformers: 3.1.1
- Transformers: 4.45.1
- PyTorch: 2.2.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.20.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->