Farshid's picture
update model card README.md
3874321
|
raw
history blame
2.43 kB
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- financial_phrasebank
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased_allagree3
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: financial_phrasebank
type: financial_phrasebank
args: sentences_allagree
metrics:
- name: Accuracy
type: accuracy
value: 0.9778761061946902
- name: F1
type: f1
value: 0.9780006392634297
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased_allagree3
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the financial_phrasebank dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0937
- Accuracy: 0.9779
- F1: 0.9780
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.6418 | 1.0 | 57 | 0.3340 | 0.8805 | 0.8768 |
| 0.1821 | 2.0 | 114 | 0.1088 | 0.9690 | 0.9691 |
| 0.0795 | 3.0 | 171 | 0.0822 | 0.9823 | 0.9823 |
| 0.0385 | 4.0 | 228 | 0.0939 | 0.9646 | 0.9646 |
| 0.0218 | 5.0 | 285 | 0.1151 | 0.9735 | 0.9737 |
| 0.0149 | 6.0 | 342 | 0.1126 | 0.9690 | 0.9694 |
| 0.006 | 7.0 | 399 | 0.0989 | 0.9779 | 0.9780 |
| 0.0093 | 8.0 | 456 | 0.1009 | 0.9779 | 0.9780 |
| 0.0063 | 9.0 | 513 | 0.0899 | 0.9779 | 0.9780 |
| 0.0039 | 10.0 | 570 | 0.0937 | 0.9779 | 0.9780 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cpu
- Datasets 2.3.2
- Tokenizers 0.12.1