Waraqon v3: Arabic OCR with HTML Structure
Fine-tuned Qwen2-VL model for Arabic OCR with HTML formatting, trained on Qari 0.3 dataset.
Model Details
- Base Model: NAMAA-Space/Qari-OCR-0.2.2.1-VL-2B-Instruct
- Training Dataset: QariOCR-v0.3-markdown-mixed-dataset
- Training Steps: 5,000 (checkpoint from interruption)
- Fine-tuning Method: LoRA with Unsloth
Usage
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
from PIL import Image
import torch
model = Qwen2VLForConditionalGeneration.from_pretrained(
"FatimahEmadEldin/Waraqon-v3-Arabic-OCR-HTML-Qari",
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True
)
processor = AutoProcessor.from_pretrained("FatimahEmadEldin/Waraqon-v3-Arabic-OCR-HTML-Qari", trust_remote_code=True)
image = Image.open("arabic_text.jpg")
messages = [{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": "استخرج النص من هذه الصورة بتنسيق HTML"}
]
}]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(text=[text], images=image_inputs, videos=video_inputs,
padding=True, return_tensors="pt").to(model.device)
with torch.no_grad():
output_ids = model.generate(**inputs, max_new_tokens=2048)
generated_ids = [output_ids[len(input_ids):]
for input_ids, output_ids in zip(inputs.input_ids, output_ids)]
output = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(output)
License
Apache 2.0
- Downloads last month
- 22
Model tree for FatimahEmadEldin/Waraqon-v3-Arabic-OCR-HTML-Qari
Base model
Qwen/Qwen2-VL-2B
Finetuned
Qwen/Qwen2-VL-2B-Instruct