Ffftdtd5dtft's picture
Upload README.md with huggingface_hub
0499354 verified
---
base_model: bigcode/starcoder2-3b
datasets:
- bigcode/the-stack-v2-train
library_name: transformers
license: bigcode-openrail-m
pipeline_tag: text-generation
tags:
- code
- llama-cpp
- gguf-my-repo
inference: true
widget:
- text: 'def print_hello_world():'
example_title: Hello world
group: Python
model-index:
- name: starcoder2-3b
results:
- task:
type: text-generation
dataset:
name: CruxEval-I
type: cruxeval-i
metrics:
- type: pass@1
value: 32.7
- task:
type: text-generation
dataset:
name: DS-1000
type: ds-1000
metrics:
- type: pass@1
value: 25.0
- task:
type: text-generation
dataset:
name: GSM8K (PAL)
type: gsm8k-pal
metrics:
- type: accuracy
value: 27.7
- task:
type: text-generation
dataset:
name: HumanEval+
type: humanevalplus
metrics:
- type: pass@1
value: 27.4
- task:
type: text-generation
dataset:
name: HumanEval
type: humaneval
metrics:
- type: pass@1
value: 31.7
- task:
type: text-generation
dataset:
name: RepoBench-v1.1
type: repobench-v1.1
metrics:
- type: edit-smiliarity
value: 71.19
---
# Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF
This model was converted to GGUF format from [`bigcode/starcoder2-3b`](https://huggingface.co/bigcode/starcoder2-3b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/bigcode/starcoder2-3b) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF --hf-file starcoder2-3b-q2_k.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF --hf-file starcoder2-3b-q2_k.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF --hf-file starcoder2-3b-q2_k.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF --hf-file starcoder2-3b-q2_k.gguf -c 2048
```