|
--- |
|
library_name: peft |
|
license: mit |
|
datasets: |
|
- timdettmers/openassistant-guanaco |
|
- tatsu-lab/alpaca |
|
- BI55/MedText |
|
language: |
|
- en |
|
pipeline_tag: question-answering |
|
--- |
|
Here is a README.md explaining how to run the Archimedes model locally: |
|
|
|
# Archimedes Model |
|
|
|
This README provides instructions for running the Archimedes conversational AI assistant locally. |
|
|
|
## Requirements |
|
|
|
- Python 3.6+ |
|
- [Transformers](https://huggingface.co/docs/transformers/installation) |
|
- [Peft](https://github.com/hazyresearch/peft) |
|
- PyTorch |
|
- Access to the LLAMA 2 model files or a cloned public model |
|
|
|
Install requirements: |
|
|
|
``` |
|
!pip install transformers |
|
!pip install peft |
|
!pip install torch |
|
!pip install datasets |
|
!pip install bitsandbytes |
|
``` |
|
|
|
## Usage |
|
|
|
```python |
|
import transformers |
|
from peft import LoraConfig, get_peft_model |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig |
|
|
|
login() # Need access to the gated model. |
|
|
|
# Load LLAMA 2 model |
|
model_name = "meta-llama/Llama-2-7b-chat-hf" |
|
|
|
# Quantization configuration |
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.float16, |
|
) |
|
|
|
# Load model |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
quantization_config=bnb_config, |
|
trust_remote_code=True |
|
) |
|
|
|
# Load LoRA configuration |
|
lora_config = LoraConfig.from_pretrained('harpyerr/archimedes-300s-7b-chat') |
|
model = get_peft_model(model, lora_config) |
|
|
|
# Load tokenizer |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
# Define prompt |
|
text = "Can you tell me who made Space-X?" |
|
prompt = "You are a helpful assistant. Please provide an informative response. \n\n" + text |
|
|
|
# Generate response |
|
device = "cuda:0" |
|
inputs = tokenizer(prompt, return_tensors="pt").to(device) |
|
outputs = model.generate(**inputs, max_new_tokens=100) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
``` |
|
|
|
This loads the LLAMA 2 model, applies 4-bit quantization and LoRA optimizations, constructs a prompt, and generates a response. |
|
|
|
See the [docs](https://huggingface.co/docs/transformers/model_doc/auto#transformers.AutoModelForCausalLM) for more details. |
|
|