RASMUS's picture
End of training
bc5193e
metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - common_voice_11_0
metrics:
  - wer
model-index:
  - name: WhisperTinyFinnishV3
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_11_0
          type: common_voice_11_0
          config: fi
          split: test
          args: fi
        metrics:
          - name: Wer
            type: wer
            value: 45.13758009800226

WhisperTinyFinnishV3

This model is a fine-tuned version of openai/whisper-tiny on the common_voice_11_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5363
  • Wer: 45.1376

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-06
  • train_batch_size: 32
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.9236 0.1 1000 0.7783 58.5187
0.727 0.2 2000 0.6638 53.1097
0.6867 0.3 3000 0.6113 50.2639
0.8348 0.4 4000 0.5882 48.2661
0.5165 0.5 5000 0.5679 47.1259
0.5509 0.6 6000 0.5540 46.6359
0.639 0.7 7000 0.5466 46.5228
0.4715 0.8 8000 0.5400 45.9763
0.6306 0.9 9000 0.5363 45.1376
0.4598 1.0 10000 0.5352 45.4768

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0