File size: 6,402 Bytes
4a08cd1
8c5600c
cb0f791
4a08cd1
29bedc1
 
443b72a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29bedc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c5600c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
---
license: apache-2.0
datasets: debatelab/deepa2
---
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
classifier = pipeline("ner", model=model, tokenizer=tokenizer)
classifier("Alya told Jasmine that Andrew could pay with cash..")
[{'end': 2,
  'entity': 'I-PER',
  'index': 1,
  'score': 0.9997861,
  'start': 0,
  'word': '▁Al'},
 {'end': 4,
  'entity': 'I-PER',
  'index': 2,
  'score': 0.9998591,
  'start': 2,
  'word': 'ya'},
 {'end': 16,
  'entity': 'I-PER',
  'index': 4,
  'score': 0.99995816,
  'start': 10,
  'word': '▁Jasmin'},
 {'end': 17,
  'entity': 'I-PER',
  'index': 5,
  'score': 0.9999584,
  'start': 16,
  'word': 'e'},
 {'end': 29,
  'entity': 'I-PER',
  'index': 7,
  'score': 0.99998057,
  'start': 23,
  'word': '▁Andrew'}]

Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.

Training
See the following resources for training data and training procedure details:

XLM-RoBERTa-large model card
CoNLL-2003 data card
Associated paper
Evaluation
See the associated paper for evaluation details.

Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

Hardware Type: 500 32GB Nvidia V100 GPUs (from the associated paper)
Hours used: More information needed
Cloud Provider: More information needed
Compute Region: More information needed
Carbon Emitted: More information needed
Technical Specifications
See the associated paper for further details.

Citation
BibTeX:

@article{conneau2019unsupervised,
  title={Unsupervised Cross-lingual Representation Learning at Scale},
  author={Conneau, Alexis and Khandelwal, Kartikay and Goyal, Naman and Chaudhary, Vishrav and Wenzek, Guillaume and Guzm{\'a}n, Francisco and Grave, Edouard and Ott, Myle and Zettlemoyer, Luke and Stoyanov, Veselin},
  journal={arXiv preprint arXiv:1911.02116},
  year={2019}
}

APA:

Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., ... & Stoyanov, V. (2019). Unsupervised cross-lingual representation learning at scale. arXiv preprint arXiv:1911.02116.
Model Card Authors
This model card was written by the team at Hugging Face.

How to Get Started with the Model
Use the code below to get started with the model. You can use this model directly within a pipeline for NER.

Click to expand
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
classifier = pipeline("ner", model=model, tokenizer=tokenizer)
classifier("Hello I'm Omar and I live in Zürich.")

[{'end': 14,
  'entity': 'I-PER',
  'index': 5,
  'score': 0.9999175,
  'start': 10,
  'word': '▁Omar'},
 {'end': 35,
  'entity': 'I-LOC',
  'index': 10,
  'score': 0.9999906,
  'start': 29,
  'word': '▁Zürich'}]
  from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
classifier = pipeline("ner", model=model, tokenizer=tokenizer)
classifier("Alya told Jasmine that Andrew could pay with cash..")
[{'end': 2,
  'entity': 'I-PER',
  'index': 1,
  'score': 0.9997861,
  'start': 0,
  'word': '▁Al'},
 {'end': 4,
  'entity': 'I-PER',
  'index': 2,
  'score': 0.9998591,
  'start': 2,
  'word': 'ya'},
 {'end': 16,
  'entity': 'I-PER',
  'index': 4,
  'score': 0.99995816,
  'start': 10,
  'word': '▁Jasmin'},
 {'end': 17,
  'entity': 'I-PER',
  'index': 5,
  'score': 0.9999584,
  'start': 16,
  'word': 'e'},
 {'end': 29,
  'entity': 'I-PER',
  'index': 7,
  'score': 0.99998057,
  'start': 23,
  'word': '▁Andrew'}]

Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.

Training
See the following resources for training data and training procedure details:

XLM-RoBERTa-large model card
CoNLL-2003 data card
Associated paper
Evaluation
See the associated paper for evaluation details.

Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

Hardware Type: 500 32GB Nvidia V100 GPUs (from the associated paper)
Hours used: More information needed
Cloud Provider: More information needed
Compute Region: More information needed
Carbon Emitted: More information needed
Technical Specifications
See the associated paper for further details.

Citation
BibTeX:

@article{conneau2019unsupervised,
  title={Unsupervised Cross-lingual Representation Learning at Scale},
  author={Conneau, Alexis and Khandelwal, Kartikay and Goyal, Naman and Chaudhary, Vishrav and Wenzek, Guillaume and Guzm{\'a}n, Francisco and Grave, Edouard and Ott, Myle and Zettlemoyer, Luke and Stoyanov, Veselin},
  journal={arXiv preprint arXiv:1911.02116},
  year={2019}
}

APA:

Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., ... & Stoyanov, V. (2019). Unsupervised cross-lingual representation learning at scale. arXiv preprint arXiv:1911.02116.
Model Card Authors
This model card was written by the team at Hugging Face.

How to Get Started with the Model
Use the code below to get started with the model. You can use this model directly within a pipeline for NER.

Click to expand
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
classifier = pipeline("ner", model=model, tokenizer=tokenizer)
classifier("Hello I'm Omar and I live in Zürich.")

[{'end': 14,
  'entity': 'I-PER',
  'index': 5,
  'score': 0.9999175,
  'start': 10,
  'word': '▁Omar'},
 {'end': 35,
  'entity': 'I-LOC',
  'index': 10,
  'score': 0.9999906,
  'start': 29,
  'word': '▁Zürich'}
  ]from datasets import load_dataset

dataset = load_dataset("debatelab/deepa2")