random_files / playground_yeet_the_unclean.py
Flux9665's picture
Upload playground_yeet_the_unclean.py
3e9fcf2 verified
import multiprocessing
import os
import shutil
import librosa as lb
import numpy as np
import soundfile as sf
from deepmultilingualpunctuation import PunctuationModel
from pyannote.audio import Pipeline
from rpunct import RestorePuncts
from tqdm import tqdm
class UncleanYeeter:
def __init__(self):
"""
all the models and persistent stuff
"""
self.diarizer = Pipeline.from_pretrained("pyannote/speaker-diarization@2.1")
def create_list_of_samples_marked_for_deletion(self, list_of_audios):
marked_for_yeeting = list()
for audio_file in tqdm(list_of_audios):
try:
wav, sr = sf.read(audio_file)
except RuntimeError:
print(f"PROBLEMATIC FILE: {audio_file}")
continue
wav = to_mono(wav)
# check duration
if 5 < len(wav) / sr < 15:
continue
# check SNR
if wada_snr(wav) < 20.0:
continue
# check amount of speakers
try:
output = self.diarizer(audio_file)
except ValueError:
print("Diarizer is unhappy")
continue
speakers = set()
for _, _, speaker in output.itertracks(yield_label=True):
speakers.add(speaker)
if len(speakers) > 1:
continue
marked_for_yeeting.append(audio_file.split("/")[-1])
# save list of files to be yoten to a file for later yeeting
with open("files_to_keep.txt", "a", encoding="utf8") as file:
file.write("\n".join(marked_for_yeeting) + "\n")
print(marked_for_yeeting)
class Punctuator:
def __init__(self, lang="eng"):
if lang == "en":
model = RestorePuncts()
self.punctuate_transcripts = model.punctuate # pass a string into it and you get a punctuated string returned
else:
model = PunctuationModel()
self.punctuate_transcripts = model.restore_punctuation # pass a string into it and you get a punctuated string returned
def wada_snr(wav):
# Direct blind estimation of the SNR of a speech signal.
#
# Paper on WADA SNR:
# http://www.cs.cmu.edu/~robust/Papers/KimSternIS08.pdf
#
# This function was adapted from this matlab code:
# https://labrosa.ee.columbia.edu/projects/snreval/#9
# init
eps = 1e-10
# next 2 lines define a fancy curve derived from a gamma distribution -- see paper
db_vals = np.arange(-20, 101)
g_vals = np.array(
[0.40974774, 0.40986926, 0.40998566, 0.40969089, 0.40986186, 0.40999006, 0.41027138, 0.41052627, 0.41101024, 0.41143264, 0.41231718, 0.41337272, 0.41526426, 0.4178192, 0.42077252, 0.42452799, 0.42918886, 0.43510373, 0.44234195, 0.45161485, 0.46221153, 0.47491647, 0.48883809, 0.50509236, 0.52353709, 0.54372088, 0.56532427,
0.58847532, 0.61346212, 0.63954496, 0.66750818, 0.69583724, 0.72454762, 0.75414799, 0.78323148, 0.81240985, 0.84219775, 0.87166406, 0.90030504, 0.92880418, 0.95655449, 0.9835349, 1.01047155, 1.0362095, 1.06136425, 1.08579312, 1.1094819, 1.13277995, 1.15472826, 1.17627308, 1.19703503, 1.21671694, 1.23535898, 1.25364313,
1.27103891, 1.28718029, 1.30302865, 1.31839527, 1.33294817, 1.34700935, 1.3605727, 1.37345513, 1.38577122, 1.39733504, 1.40856397, 1.41959619, 1.42983624, 1.43958467, 1.44902176, 1.45804831, 1.46669568, 1.47486938, 1.48269965, 1.49034339, 1.49748214, 1.50435106, 1.51076426, 1.51698915, 1.5229097, 1.528578, 1.53389835, 1.5391211,
1.5439065, 1.54858517, 1.55310776, 1.55744391, 1.56164927, 1.56566348, 1.56938671, 1.57307767, 1.57654764, 1.57980083, 1.58304129, 1.58602496, 1.58880681, 1.59162477, 1.5941969, 1.59693155, 1.599446, 1.60185011, 1.60408668, 1.60627134, 1.60826199, 1.61004547, 1.61192472, 1.61369656, 1.61534074, 1.61688905, 1.61838916, 1.61985374,
1.62135878, 1.62268119, 1.62390423, 1.62513143, 1.62632463, 1.6274027, 1.62842767, 1.62945532, 1.6303307, 1.63128026, 1.63204102])
# peak normalize, get magnitude, clip lower bound
wav = np.array(wav)
wav = wav / abs(wav).max()
abs_wav = abs(wav)
abs_wav[abs_wav < eps] = eps
# calcuate statistics
# E[|z|]
v1 = max(eps, abs_wav.mean())
# E[log|z|]
v2 = np.log(abs_wav).mean()
# log(E[|z|]) - E[log(|z|)]
v3 = np.log(v1) - v2
# table interpolation
wav_snr_idx = None
if any(g_vals < v3):
wav_snr_idx = np.where(g_vals < v3)[0].max()
# handle edge cases or interpolate
if wav_snr_idx is None:
wav_snr = db_vals[0]
elif wav_snr_idx == len(db_vals) - 1:
wav_snr = db_vals[-1]
else:
wav_snr = db_vals[wav_snr_idx] + \
(v3 - g_vals[wav_snr_idx]) / (g_vals[wav_snr_idx + 1] - g_vals[wav_snr_idx]) * (db_vals[wav_snr_idx + 1] - db_vals[wav_snr_idx])
# Calculate SNR
dEng = sum(wav ** 2)
dFactor = 10 ** (wav_snr / 10)
dNoiseEng = dEng / (1 + dFactor) # Noise energy
dSigEng = dEng * dFactor / (1 + dFactor) # Signal energy
snr = 10 * np.log10(dSigEng / dNoiseEng)
return snr
def to_mono(x):
"""
make sure we deal with a 1D array
"""
if len(x.shape) == 2:
return lb.to_mono(np.transpose(x))
else:
return x
def clean_mls_ger():
clean_mls("mls_german", "de")
def clean_mls_fr():
clean_mls("mls_french", "fr")
def clean_mls_it():
clean_mls("mls_italian", "it")
def clean_mls_eng():
clean_mls("mls_english", "en")
def clean_mls(lang_dir, lang):
punco = Punctuator(lang=lang)
new_file = ""
shutil.copy(f"/mount/resources/speech/corpora/MultiLingLibriSpeech/{lang_dir}/train/transcripts.txt", f"/mount/resources/speech/corpora/MultiLingLibriSpeech/{lang_dir}/train/orig_transcripts.txt")
with open(f"/mount/resources/speech/corpora/MultiLingLibriSpeech/{lang_dir}/train/transcripts.txt", "r", encoding="utf8") as file:
sentence_list = file.read().split("\n")
for sentence in tqdm(sentence_list):
if sentence.strip() == "":
continue
sent_id = sentence.split()[0]
punc_sent = punco.punctuate_transcripts(" ".join(sentence.split()[1:]))
new_file = new_file + f"{sent_id}\t{punc_sent}\n"
with open(f"/mount/resources/speech/corpora/MultiLingLibriSpeech/{lang_dir}/train/transcripts.txt", "w", encoding="utf8") as file:
file.write(new_file)
def build_path_to_transcript_dict_gigaspeech():
path_to_transcript = dict()
root = "/mount/resources/speech/corpora/GigaSpeech/"
with open(os.path.join(root, "transcripts.txt"), "r", encoding="utf8") as file:
lookup = file.read()
for line in lookup.split("\n"):
if line.strip() != "":
norm_transcript = line.split("\t")[1]
wav_path = os.path.join(root, "wavs", line.split("\t")[0])
if os.path.exists(wav_path):
path_to_transcript[wav_path] = norm_transcript
return path_to_transcript
def split_list(lst, n):
if n <= 0:
return []
quotient, remainder = divmod(len(lst), n)
shards = [lst[i * quotient + min(i, remainder):(i + 1) * quotient + min(i + 1, remainder)] for i in range(n)]
return shards
def yonkus(shard):
yeet = UncleanYeeter()
yeet.create_list_of_samples_marked_for_deletion(shard)
if __name__ == '__main__':
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "6"
print(f"Making GPU {os.environ['CUDA_VISIBLE_DEVICES']} the only visible device.")
list_of_files = os.listdir("/mount/resources/speech/corpora/GigaSpeech/wavs")
absolute_list_of_files = list()
for filo in list_of_files:
absolute_list_of_files.append(f"/mount/resources/speech/corpora/GigaSpeech/wavs/{filo}")
processes = list()
for sublist in split_list(absolute_list_of_files, 20):
processes.append(multiprocessing.Process(args=(sublist,), target=yonkus, daemon=True))
processes[-1].start()
for processo in processes:
processo.join()
# clean_mls_it()
# clean_mls_fr()
# clean_mls_ger()
# clean_mls_eng()