|
--- |
|
library_name: stable-baselines3 |
|
tags: |
|
- PandaReachDense-v3 |
|
- deep-reinforcement-learning |
|
- reinforcement-learning |
|
- stable-baselines3 |
|
model-index: |
|
- name: A2C |
|
results: |
|
- task: |
|
type: reinforcement-learning |
|
name: reinforcement-learning |
|
dataset: |
|
name: PandaReachDense-v3 |
|
type: PandaReachDense-v3 |
|
metrics: |
|
- type: mean_reward |
|
value: -0.20 +/- 0.09 |
|
name: mean_reward |
|
verified: false |
|
--- |
|
|
|
# **A2C** Agent playing **PandaReachDense-v3** |
|
This is a trained model of a **A2C** agent playing **PandaReachDense-v3** |
|
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). |
|
|
|
## Usage (with Stable-baselines3) |
|
|
|
```python |
|
from stable_baselines3 import A2C |
|
from huggingface_sb3 import load_from_hub |
|
|
|
model = load_from_hub(repo_id='Francesco-A/a2c-PandaReachDense-v3', |
|
filename= 'a2c-PandaReachDense-v3.zip') |
|
``` |
|
|
|
## Training details (last output) |
|
|
|
|
|
Metric | Value |
|
---------------------|-------- |
|
rollout/ep_len_mean | 4.05 |
|
rollout/ep_rew_mean | -0.317 |
|
time/fps | 378 |
|
time/iterations | 50000 |
|
time/time_elapsed | 2641 |
|
time/total_timesteps | 1000000 |
|
train/entropy_loss | 1.25 |
|
train/explained_variance | 0.975 |
|
train/learning_rate | 0.0007 |
|
train/n_updates | 49999 |
|
train/policy_loss | -0.0935 |
|
train/std | 0.185 |
|
train/value_loss | 0.0306 |
|
|
|
|
|
|
|
|