FritzOS's picture
add model
4162dd6
metadata
license: apache-2.0
tags:
  - generated_from_keras_callback
model-index:
  - name: TEdetection_distiBERT_NER_final
    results: []

TEdetection_distiBERT_NER_final

This model is a fine-tuned version of FritzOS/TEdetection_distiBERT_mLM_final on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0031
  • Validation Loss: 0.0035
  • Epoch: 0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 220743, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'passive_serialization': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Validation Loss Epoch
0.0031 0.0035 0

Framework versions

  • Transformers 4.19.4
  • TensorFlow 2.8.2
  • Datasets 2.2.2
  • Tokenizers 0.12.1