a2c-PandaReachDense-v2 / config.json
GGunjan's picture
Initial commit
85b4ced
raw
history blame
15.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1792ac35e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1792ac4500>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681217332620792045, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAwbLIPmQmrTxfngw/wbLIPmQmrTxfngw/wbLIPmQmrTxfngw/wbLIPmQmrTxfngw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATey6vwGUQr/T6ou/MhWBv7cN1D7oevA+DqzSP20aFb/Blpw/xmDEP/4SPj4pvii/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADBssg+ZCatPF+eDD/0DhO8MJuLunwLHzvBssg+ZCatPF+eDD/0DhO8MJuLunwLHzvBssg+ZCatPF+eDD/0DhO8MJuLunwLHzvBssg+ZCatPF+eDD/0DhO8MJuLunwLHzuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.39198878 0.02113647 0.54929155]\n [0.39198878 0.02113647 0.54929155]\n [0.39198878 0.02113647 0.54929155]\n [0.39198878 0.02113647 0.54929155]]", "desired_goal": "[[-1.4603363 -0.76007086 -1.0931038 ]\n [-1.0084593 0.41416714 0.4696877 ]\n [ 1.6458757 -0.5824345 1.2233506 ]\n [ 1.5342033 0.18561932 -0.6591516 ]]", "observation": "[[ 0.39198878 0.02113647 0.54929155 -0.00897573 -0.00106511 0.00242683]\n [ 0.39198878 0.02113647 0.54929155 -0.00897573 -0.00106511 0.00242683]\n [ 0.39198878 0.02113647 0.54929155 -0.00897573 -0.00106511 0.00242683]\n [ 0.39198878 0.02113647 0.54929155 -0.00897573 -0.00106511 0.00242683]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAG0faPR6bhjutX3U+D7PFPQSYBLwZI5Y+0bYWvQ7FAr3aEsE8ok1XvQ5tC76D+A0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.10658094 0.00410785 0.23962279]\n [ 0.09653293 -0.00809288 0.29323652]\n [-0.03679544 -0.03192621 0.02356856]\n [-0.05256427 -0.1361582 0.13864331]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgsmNImvNAMCUhpRSlIwBbJRLMowBdJRHQLVpYpON5t51fZQoaAZoCWgPQwjUYvAw7VsGwJSGlFKUaBVLMmgWR0C1aTgq7ROUdX2UKGgGaAloD0MIHa9A9KTM+7+UhpRSlGgVSzJoFkdAtWkMdjoZAXV9lChoBmgJaA9DCEsDP6phfxHAlIaUUpRoFUsyaBZHQLVo4VhCtzV1fZQoaAZoCWgPQwjqA8k7h9ITwJSGlFKUaBVLMmgWR0C1adBgNPP+dX2UKGgGaAloD0MI6pJxjGTvBcCUhpRSlGgVSzJoFkdAtWmmIAOrhnV9lChoBmgJaA9DCLB2FOeogwXAlIaUUpRoFUsyaBZHQLVpemnwXqJ1fZQoaAZoCWgPQwjik04kmPoRwJSGlFKUaBVLMmgWR0C1aU9JOFg2dX2UKGgGaAloD0MIxsIQOX39BcCUhpRSlGgVSzJoFkdAtWpAFzMibHV9lChoBmgJaA9DCFiNJayNcQrAlIaUUpRoFUsyaBZHQLVqFaaTfSB1fZQoaAZoCWgPQwjiyAORRToFwJSGlFKUaBVLMmgWR0C1aeoSYgJUdX2UKGgGaAloD0MIpRMJppoZDcCUhpRSlGgVSzJoFkdAtWm+3VkMC3V9lChoBmgJaA9DCKcgPxu5DgLAlIaUUpRoFUsyaBZHQLVqr1m8M/h1fZQoaAZoCWgPQwipT3KHTYQHwJSGlFKUaBVLMmgWR0C1aoTlxOtXdX2UKGgGaAloD0MINuUK73LBEsCUhpRSlGgVSzJoFkdAtWpZNj9XLnV9lChoBmgJaA9DCAEUI0vm2AzAlIaUUpRoFUsyaBZHQLVqLikfs/p1fZQoaAZoCWgPQwjGFKxxNh0RwJSGlFKUaBVLMmgWR0C1axxxT850dX2UKGgGaAloD0MInkXvVMAdB8CUhpRSlGgVSzJoFkdAtWryAjIJaHV9lChoBmgJaA9DCN1AgXfyiQ3AlIaUUpRoFUsyaBZHQLVqxk8zQ/p1fZQoaAZoCWgPQwjO/kC5bV8FwJSGlFKUaBVLMmgWR0C1apsmfGuLdX2UKGgGaAloD0MIg4dp39z/BsCUhpRSlGgVSzJoFkdAtWvLJJXhfnV9lChoBmgJaA9DCDc2O1J9BwXAlIaUUpRoFUsyaBZHQLVroSjQAuJ1fZQoaAZoCWgPQwiSrS6nBOQDwJSGlFKUaBVLMmgWR0C1a3XE61b8dX2UKGgGaAloD0MIuatXkdGBAcCUhpRSlGgVSzJoFkdAtWtK6shgV3V9lChoBmgJaA9DCOaSqu0m+BDAlIaUUpRoFUsyaBZHQLVsfy0rsjV1fZQoaAZoCWgPQwh3EDtT6GwQwJSGlFKUaBVLMmgWR0C1bFUOuq3mdX2UKGgGaAloD0MItcNfkzWKDcCUhpRSlGgVSzJoFkdAtWwppDeCTXV9lChoBmgJaA9DCFsjgnFw6QLAlIaUUpRoFUsyaBZHQLVr/rDqGDd1fZQoaAZoCWgPQwh/UBcplEULwJSGlFKUaBVLMmgWR0C1bS8enyd4dX2UKGgGaAloD0MIexUZHZCEA8CUhpRSlGgVSzJoFkdAtW0E9wFTvXV9lChoBmgJaA9DCLQ7pBggEQTAlIaUUpRoFUsyaBZHQLVs2YL9deJ1fZQoaAZoCWgPQwhjuaXVkLgQwJSGlFKUaBVLMmgWR0C1bK6cNH6NdX2UKGgGaAloD0MI+g5+4gC6BMCUhpRSlGgVSzJoFkdAtW3iM72crnV9lChoBmgJaA9DCM2spYC0fwbAlIaUUpRoFUsyaBZHQLVtuFG5MDh1fZQoaAZoCWgPQwgfuwuUFJgPwJSGlFKUaBVLMmgWR0C1bY0BOpKjdX2UKGgGaAloD0MIbCIzF7gMEMCUhpRSlGgVSzJoFkdAtW1iGbkOqnV9lChoBmgJaA9DCCF3EaYoVxDAlIaUUpRoFUsyaBZHQLVulnZ00WN1fZQoaAZoCWgPQwj5vOKpR7oFwJSGlFKUaBVLMmgWR0C1bmxkd3jddX2UKGgGaAloD0MI8DMuHAhpCcCUhpRSlGgVSzJoFkdAtW5BEroW6HV9lChoBmgJaA9DCIeiQJ/IoxDAlIaUUpRoFUsyaBZHQLVuFid8Rcx1fZQoaAZoCWgPQwiwVYLF4QwFwJSGlFKUaBVLMmgWR0C1b0tehPCVdX2UKGgGaAloD0MIeAlOfSC5EMCUhpRSlGgVSzJoFkdAtW8hN34bj3V9lChoBmgJaA9DCDFdiNUfQQjAlIaUUpRoFUsyaBZHQLVu9eNDMNd1fZQoaAZoCWgPQwjzAuyjUzcGwJSGlFKUaBVLMmgWR0C1bssQEpy7dX2UKGgGaAloD0MI0lPkEHGTCcCUhpRSlGgVSzJoFkdAtXAGaG5+Y3V9lChoBmgJaA9DCCLH1jOEsxDAlIaUUpRoFUsyaBZHQLVv3EF4cFR1fZQoaAZoCWgPQwiwjXiym1kFwJSGlFKUaBVLMmgWR0C1b7ErGza9dX2UKGgGaAloD0MISwUVVb9yCcCUhpRSlGgVSzJoFkdAtW+GScLBsXV9lChoBmgJaA9DCBAk7xzKEAXAlIaUUpRoFUsyaBZHQLVwnkVN5+p1fZQoaAZoCWgPQwh7Mv/om0QTwJSGlFKUaBVLMmgWR0C1cHP/rB0qdX2UKGgGaAloD0MIa378pUUdEMCUhpRSlGgVSzJoFkdAtXBIXMyJsXV9lChoBmgJaA9DCChlUkMbIAjAlIaUUpRoFUsyaBZHQLVwHV3EAHV1fZQoaAZoCWgPQwirsBnggowTwJSGlFKUaBVLMmgWR0C1cQ1cdHUddX2UKGgGaAloD0MIXkpdMo7xEsCUhpRSlGgVSzJoFkdAtXDi9AX2unV9lChoBmgJaA9DCDYgQlw5KxHAlIaUUpRoFUsyaBZHQLVwt0NSZSh1fZQoaAZoCWgPQwiMnfASnHoJwJSGlFKUaBVLMmgWR0C1cIwfU4JedX2UKGgGaAloD0MIQukLIee9EsCUhpRSlGgVSzJoFkdAtXF/6XSjQHV9lChoBmgJaA9DCMxDpnwICgjAlIaUUpRoFUsyaBZHQLVxVaSLZSN1fZQoaAZoCWgPQwjmzHaFPjgDwJSGlFKUaBVLMmgWR0C1cSn/HYHxdX2UKGgGaAloD0MI4iNiSiRRB8CUhpRSlGgVSzJoFkdAtXD+2H+IdnV9lChoBmgJaA9DCJg1scBXVArAlIaUUpRoFUsyaBZHQLVx81EVnEl1fZQoaAZoCWgPQwghsHJokU0MwJSGlFKUaBVLMmgWR0C1ccjvZyuIdX2UKGgGaAloD0MIhiAHJcx0CsCUhpRSlGgVSzJoFkdAtXGdOclPanV9lChoBmgJaA9DCGjMJOoFfwfAlIaUUpRoFUsyaBZHQLVxciRGMGZ1fZQoaAZoCWgPQwjU8C2sG88CwJSGlFKUaBVLMmgWR0C1cmOIInjRdX2UKGgGaAloD0MIQdR9AFJbC8CUhpRSlGgVSzJoFkdAtXI5I+W4VnV9lChoBmgJaA9DCKSoM/eQMAvAlIaUUpRoFUsyaBZHQLVyDXu3MIN1fZQoaAZoCWgPQwjWHvZCATsKwJSGlFKUaBVLMmgWR0C1ceJ2U0N0dX2UKGgGaAloD0MIyxRzEHSUDcCUhpRSlGgVSzJoFkdAtXLWknCwbHV9lChoBmgJaA9DCD52FygpEArAlIaUUpRoFUsyaBZHQLVyrDXe3x51fZQoaAZoCWgPQwiAngYMkj4JwJSGlFKUaBVLMmgWR0C1coCQHRkVdX2UKGgGaAloD0MISOAPP//9A8CUhpRSlGgVSzJoFkdAtXJVgVoHs3V9lChoBmgJaA9DCH8yxofZKw7AlIaUUpRoFUsyaBZHQLVzRiS7oSt1fZQoaAZoCWgPQwgj88gfDGwQwJSGlFKUaBVLMmgWR0C1cxvDtPYWdX2UKGgGaAloD0MIiIIZU7BGCMCUhpRSlGgVSzJoFkdAtXLwIY3vQXV9lChoBmgJaA9DCATidf2CfQPAlIaUUpRoFUsyaBZHQLVyxPfKp1l1fZQoaAZoCWgPQwhWtg95y7UKwJSGlFKUaBVLMmgWR0C1c70yYXwcdX2UKGgGaAloD0MIRX9o5sn1AsCUhpRSlGgVSzJoFkdAtXOS94/u9nV9lChoBmgJaA9DCH6nyYy3RRLAlIaUUpRoFUsyaBZHQLVzZ0mtyPx1fZQoaAZoCWgPQwjhJM0f09oFwJSGlFKUaBVLMmgWR0C1czwevIOpdX2UKGgGaAloD0MIdGA5QgYSBcCUhpRSlGgVSzJoFkdAtXQvYsd1dXV9lChoBmgJaA9DCBQhdTv7ygnAlIaUUpRoFUsyaBZHQLV0BRMvh611fZQoaAZoCWgPQwi0WIrkKwELwJSGlFKUaBVLMmgWR0C1c9lfNRm9dX2UKGgGaAloD0MIHAx1WOF2DMCUhpRSlGgVSzJoFkdAtXOuRq46O3V9lChoBmgJaA9DCCl2NA71GwfAlIaUUpRoFUsyaBZHQLV0n1twaR91fZQoaAZoCWgPQwjp8Xub/nwRwJSGlFKUaBVLMmgWR0C1dHUaAFxGdX2UKGgGaAloD0MIdA0zNJ6oCsCUhpRSlGgVSzJoFkdAtXRJhUipvXV9lChoBmgJaA9DCAQeGED4UAPAlIaUUpRoFUsyaBZHQLV0Hnyup0h1fZQoaAZoCWgPQwgHswkwLJ8KwJSGlFKUaBVLMmgWR0C1dQ7TH80ldX2UKGgGaAloD0MIrU7OUNyRB8CUhpRSlGgVSzJoFkdAtXTkaWHDaXV9lChoBmgJaA9DCA72JobkhBLAlIaUUpRoFUsyaBZHQLV0uNOuaF51fZQoaAZoCWgPQwhDq5MzFNcCwJSGlFKUaBVLMmgWR0C1dI2tdRixdX2UKGgGaAloD0MIcvkP6bcPEMCUhpRSlGgVSzJoFkdAtXV+K77KrHV9lChoBmgJaA9DCHDP86eN2hHAlIaUUpRoFUsyaBZHQLV1U7ojfN11fZQoaAZoCWgPQwhMM93rpI4QwJSGlFKUaBVLMmgWR0C1dSf9P1tgdX2UKGgGaAloD0MIQ1N2+kGdC8CUhpRSlGgVSzJoFkdAtXT8xgy/K3V9lChoBmgJaA9DCGggls0csgnAlIaUUpRoFUsyaBZHQLV17DdP+GZ1fZQoaAZoCWgPQwikq3R3nU0DwJSGlFKUaBVLMmgWR0C1dcHGXHBDdX2UKGgGaAloD0MI2ubG9ITFBsCUhpRSlGgVSzJoFkdAtXWWDYh+v3V9lChoBmgJaA9DCGQhOgSO5ArAlIaUUpRoFUsyaBZHQLV1atZFG5N1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}