a2c-PandaReachDense-v2 / config.json
GGunjan's picture
Initial commit
653ac56
raw
history blame
15.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f06225680d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f06225577c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684963072909033873, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAL4PRPtbokTqqkxI/L4PRPtbokTqqkxI/L4PRPtbokTqqkxI/L4PRPtbokTqqkxI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATHLbv/nXDT8Iysy/VkHRv+dq3T+BvJ+/0zebv8S9Ir46JF0/El8hv6zs2L0iVUY/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAvg9E+1uiROqqTEj+kdQS7TL8iuyfCsLsvg9E+1uiROqqTEj+kdQS7TL8iuyfCsLsvg9E+1uiROqqTEj+kdQS7TL8iuyfCsLsvg9E+1uiROqqTEj+kdQS7TL8iuyfCsLuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.40920398 0.0011132 0.5725657 ]\n [0.40920398 0.0011132 0.5725657 ]\n [0.40920398 0.0011132 0.5725657 ]\n [0.40920398 0.0011132 0.5725657 ]]", "desired_goal": "[[-1.7144256 0.55407673 -1.5999155 ]\n [-1.6348064 1.7298249 -1.2479402 ]\n [-1.2126411 -0.15892702 0.863834 ]\n [-0.6303569 -0.10592017 0.7747365 ]]", "observation": "[[ 0.40920398 0.0011132 0.5725657 -0.00202117 -0.00248333 -0.00539424]\n [ 0.40920398 0.0011132 0.5725657 -0.00202117 -0.00248333 -0.00539424]\n [ 0.40920398 0.0011132 0.5725657 -0.00202117 -0.00248333 -0.00539424]\n [ 0.40920398 0.0011132 0.5725657 -0.00202117 -0.00248333 -0.00539424]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAdBm7PT2ZbT2Mj38+54gFPYlMyL0RdDo9RKdwvYY1XT0f2Ow9vCyKu0kcXTybGcw8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.09135714 0.05800747 0.24957103]\n [ 0.03260126 -0.09780223 0.04552085]\n [-0.05875327 0.05400612 0.11564659]\n [-0.00421676 0.01349551 0.02491455]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQGt+/KXF/L+UhpRSlIwBbJRLMowBdJRHQKa4JL1VYIV1fZQoaAZoCWgPQwjfNH12wDX8v5SGlFKUaBVLMmgWR0Cmt+f5+H8CdX2UKGgGaAloD0MIl/+QfvtaAMCUhpRSlGgVSzJoFkdApretefI0ZXV9lChoBmgJaA9DCOIBZVOucADAlIaUUpRoFUsyaBZHQKa3cR/3Fkx1fZQoaAZoCWgPQwjcnEoGgOr2v5SGlFKUaBVLMmgWR0CmuZ+nQ6ZIdX2UKGgGaAloD0MIEXAIVWr2AMCUhpRSlGgVSzJoFkdAprli9oN/fHV9lChoBmgJaA9DCInqrYGtUvi/lIaUUpRoFUsyaBZHQKa5KClrM1V1fZQoaAZoCWgPQwj0UUZcANr6v5SGlFKUaBVLMmgWR0CmuO6XSjQBdX2UKGgGaAloD0MIvtu8cVLY+r+UhpRSlGgVSzJoFkdAprtcZxaPjnV9lChoBmgJaA9DCPAZidAINvq/lIaUUpRoFUsyaBZHQKa7H7Jnxrl1fZQoaAZoCWgPQwj/PXjt0kYEwJSGlFKUaBVLMmgWR0CmuuTj3mFKdX2UKGgGaAloD0MIeeblsPuO+r+UhpRSlGgVSzJoFkdAprqo6Mir1nV9lChoBmgJaA9DCLg+rDdqBf2/lIaUUpRoFUsyaBZHQKa84qCHymR1fZQoaAZoCWgPQwi7YduizLYQwJSGlFKUaBVLMmgWR0CmvKar3j+8dX2UKGgGaAloD0MIk1LQ7SUtBMCUhpRSlGgVSzJoFkdAprxsCgbp/3V9lChoBmgJaA9DCAfRWtHm+P6/lIaUUpRoFUsyaBZHQKa8MBjnV5N1fZQoaAZoCWgPQwi8df7tsl/6v5SGlFKUaBVLMmgWR0CmvnJ3os7NdX2UKGgGaAloD0MI16axvRb09r+UhpRSlGgVSzJoFkdApr42R1X/53V9lChoBmgJaA9DCKRRgZNtIA3AlIaUUpRoFUsyaBZHQKa9+6r/82t1fZQoaAZoCWgPQwj+YrZkVaQAwJSGlFKUaBVLMmgWR0Cmvb+TmnwYdX2UKGgGaAloD0MI5NpQMc6fA8CUhpRSlGgVSzJoFkdApsATHCGetnV9lChoBmgJaA9DCGfXvRWJyfq/lIaUUpRoFUsyaBZHQKa/1nvDxb11fZQoaAZoCWgPQwhj7e9sjx70v5SGlFKUaBVLMmgWR0Cmv5vFvQ4TdX2UKGgGaAloD0MIqrncYKiDCcCUhpRSlGgVSzJoFkdApr9fww0wanV9lChoBmgJaA9DCI+rkV1p2QHAlIaUUpRoFUsyaBZHQKbBmJtSAH51fZQoaAZoCWgPQwhV9l0R/A8AwJSGlFKUaBVLMmgWR0CmwVwHzH0cdX2UKGgGaAloD0MIxhnDnKDtB8CUhpRSlGgVSzJoFkdApsEhllK9PHV9lChoBmgJaA9DCBtIF5tWqgDAlIaUUpRoFUsyaBZHQKbA5aUzKtB1fZQoaAZoCWgPQwiXVdgMcGECwJSGlFKUaBVLMmgWR0CmwzHryDqXdX2UKGgGaAloD0MIGNLhIYwf9b+UhpRSlGgVSzJoFkdApsL1hw2l23V9lChoBmgJaA9DCHEd44qLI/i/lIaUUpRoFUsyaBZHQKbCuv3ai9J1fZQoaAZoCWgPQwh1yw7xDzsAwJSGlFKUaBVLMmgWR0Cmwn7CBPKudX2UKGgGaAloD0MINV8lH7vLBMCUhpRSlGgVSzJoFkdApsS3Ns3yZ3V9lChoBmgJaA9DCDigpSvYxgDAlIaUUpRoFUsyaBZHQKbEeoZQ53l1fZQoaAZoCWgPQwii0LLuH0sAwJSGlFKUaBVLMmgWR0CmxD+1jRUndX2UKGgGaAloD0MIV7Q5zm0iBMCUhpRSlGgVSzJoFkdApsQDiVB2OnV9lChoBmgJaA9DCFqD91W5kP2/lIaUUpRoFUsyaBZHQKbGM0WuX/p1fZQoaAZoCWgPQwhauKzCZgD4v5SGlFKUaBVLMmgWR0CmxfaYE4ecdX2UKGgGaAloD0MIBVH3AUht/r+UhpRSlGgVSzJoFkdApsW8GqxTsXV9lChoBmgJaA9DCANEwYwp2Pm/lIaUUpRoFUsyaBZHQKbFgBXjlxR1fZQoaAZoCWgPQwgkYkok0cv9v5SGlFKUaBVLMmgWR0CmxzwIMSbpdX2UKGgGaAloD0MImxvTE5a4AMCUhpRSlGgVSzJoFkdApsb+xD9fkXV9lChoBmgJaA9DCMucLouJzf2/lIaUUpRoFUsyaBZHQKbGw1gpjMF1fZQoaAZoCWgPQwjbGDvhJRgDwJSGlFKUaBVLMmgWR0CmxoaZ6UqydX2UKGgGaAloD0MIIlLTLqbZ97+UhpRSlGgVSzJoFkdApsgVGwzLwHV9lChoBmgJaA9DCOw00lJ5e/6/lIaUUpRoFUsyaBZHQKbH18twrDt1fZQoaAZoCWgPQwgtJjYf14b8v5SGlFKUaBVLMmgWR0Cmx5xg7YChdX2UKGgGaAloD0MI34rEBDUcA8CUhpRSlGgVSzJoFkdApsdfp2U0N3V9lChoBmgJaA9DCLd9j/rrlQDAlIaUUpRoFUsyaBZHQKbI7QTEit91fZQoaAZoCWgPQwjMCkW6nxMCwJSGlFKUaBVLMmgWR0CmyK+717IDdX2UKGgGaAloD0MIidAINq5/AMCUhpRSlGgVSzJoFkdApsh0fA9FF3V9lChoBmgJaA9DCJg1scBXNP+/lIaUUpRoFUsyaBZHQKbIN+CK77N1fZQoaAZoCWgPQwh4YADhQ0n6v5SGlFKUaBVLMmgWR0CmyctMwlBydX2UKGgGaAloD0MI8zl3u156CsCUhpRSlGgVSzJoFkdApsmOFL39JnV9lChoBmgJaA9DCJoiwOld/Pq/lIaUUpRoFUsyaBZHQKbJUtf5ULl1fZQoaAZoCWgPQwjURJ+PMsICwJSGlFKUaBVLMmgWR0CmyRaLfk3kdX2UKGgGaAloD0MIuhCrP8KwAcCUhpRSlGgVSzJoFkdApsqjqMWGh3V9lChoBmgJaA9DCC18fa1LbQHAlIaUUpRoFUsyaBZHQKbKZpkf9xZ1fZQoaAZoCWgPQwhDU3b6QZ3+v5SGlFKUaBVLMmgWR0Cmyiso+fRNdX2UKGgGaAloD0MISl6dY0AWAMCUhpRSlGgVSzJoFkdApsnub9ZRsXV9lChoBmgJaA9DCGufjscM1Pq/lIaUUpRoFUsyaBZHQKbLkXAM2FZ1fZQoaAZoCWgPQwhEpREz+5wJwJSGlFKUaBVLMmgWR0Cmy1Q/X5FgdX2UKGgGaAloD0MIs3xdhv90+r+UhpRSlGgVSzJoFkdApssZBLPD53V9lChoBmgJaA9DCCtQi8HDNPi/lIaUUpRoFUsyaBZHQKbK3IAfdRB1fZQoaAZoCWgPQwg7pu7KLngFwJSGlFKUaBVLMmgWR0CmzHDJU5uJdX2UKGgGaAloD0MIwXCuYYbmBMCUhpRSlGgVSzJoFkdApswzdcjZ+XV9lChoBmgJaA9DCLNcNjrnJ/2/lIaUUpRoFUsyaBZHQKbL+AJb+tN1fZQoaAZoCWgPQwisqME0DB8IwJSGlFKUaBVLMmgWR0Cmy7syi22HdX2UKGgGaAloD0MISGx3D9CdBcCUhpRSlGgVSzJoFkdAps1H7rLQonV9lChoBmgJaA9DCAlwehfvpwHAlIaUUpRoFUsyaBZHQKbNCpobn5l1fZQoaAZoCWgPQwjNWDSdnYz/v5SGlFKUaBVLMmgWR0CmzM9BKL88dX2UKGgGaAloD0MIPiZSms1jAcCUhpRSlGgVSzJoFkdApsySa1Cw8nV9lChoBmgJaA9DCMdim1Q0VgvAlIaUUpRoFUsyaBZHQKbOKYVIqb11fZQoaAZoCWgPQwi2oWKcv4kMwJSGlFKUaBVLMmgWR0CmzewtapxWdX2UKGgGaAloD0MI2iCTjJyFBcCUhpRSlGgVSzJoFkdAps2wqiGnGnV9lChoBmgJaA9DCHWUg9kEGPq/lIaUUpRoFUsyaBZHQKbNc94/u9h1fZQoaAZoCWgPQwh0DMhe7/4AwJSGlFKUaBVLMmgWR0Cmzv6dUbT+dX2UKGgGaAloD0MIHVn5ZTAGCcCUhpRSlGgVSzJoFkdAps7BZjhDPXV9lChoBmgJaA9DCHjxftx+mQXAlIaUUpRoFUsyaBZHQKbOhgP3BYV1fZQoaAZoCWgPQwhkIM8u37oBwJSGlFKUaBVLMmgWR0CmzklPSDywdX2UKGgGaAloD0MIotReRNuRAsCUhpRSlGgVSzJoFkdAps/ZqIrOJXV9lChoBmgJaA9DCB9nmrD95Pm/lIaUUpRoFUsyaBZHQKbPnIsAeaN1fZQoaAZoCWgPQwjhXpm36voGwJSGlFKUaBVLMmgWR0Cmz2HTZxrBdX2UKGgGaAloD0MI6j2V056yAMCUhpRSlGgVSzJoFkdAps8lCeEqUnV9lChoBmgJaA9DCDxsIjMXOArAlIaUUpRoFUsyaBZHQKbQtbUwztV1fZQoaAZoCWgPQwi4Pqw3agUCwJSGlFKUaBVLMmgWR0Cm0HhakhzOdX2UKGgGaAloD0MI3NjsSPVd8b+UhpRSlGgVSzJoFkdAptA9FYuCgHV9lChoBmgJaA9DCNMuppnuNf+/lIaUUpRoFUsyaBZHQKbQAFGG21F1fZQoaAZoCWgPQwg8aHbdW9H/v5SGlFKUaBVLMmgWR0Cm0Y+BpYcOdX2UKGgGaAloD0MIf6SIDKu4/b+UhpRSlGgVSzJoFkdAptFSPyTY/XV9lChoBmgJaA9DCHdqLjcYSgHAlIaUUpRoFUsyaBZHQKbRFsguAZt1fZQoaAZoCWgPQwhslPWbiSkCwJSGlFKUaBVLMmgWR0Cm0Nn7YTTOdX2UKGgGaAloD0MIHH433bIjAcCUhpRSlGgVSzJoFkdAptJn2mHgxnV9lChoBmgJaA9DCPBPqRJlr/q/lIaUUpRoFUsyaBZHQKbSKo73fyh1fZQoaAZoCWgPQwgzpmCNsykHwJSGlFKUaBVLMmgWR0Cm0e845tFbdX2UKGgGaAloD0MIC9C2mnVGBcCUhpRSlGgVSzJoFkdAptGydOIqLHV9lChoBmgJaA9DCFT+tbxyPf6/lIaUUpRoFUsyaBZHQKbTR24d6s11fZQoaAZoCWgPQwhtqBjnbwL/v5SGlFKUaBVLMmgWR0Cm0wpSR8txdX2UKGgGaAloD0MIibFMv0Q897+UhpRSlGgVSzJoFkdAptLO5QP7N3V9lChoBmgJaA9DCDkn9tA+1vu/lIaUUpRoFUsyaBZHQKbSkmtyPuJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}