Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +16 -16
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- a2c-PandaReachDense-v2/system_info.txt +3 -3
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +2 -2
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -1.92 +/- 0.48
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:999c9aa897032d0a9d29ff9e041d821f207822f3f2e9baeca46774a372aaba6c
|
3 |
+
size 108063
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -19,24 +19,24 @@
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
-
"num_timesteps":
|
23 |
-
"_total_timesteps":
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
31 |
":type:": "<class 'function'>",
|
32 |
-
":serialized:": "
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[0.
|
38 |
-
"desired_goal": "[[-1.
|
39 |
-
"observation": "[[ 0.
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,9 +44,9 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[ 0.
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
@@ -56,13 +56,13 @@
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
-
"_n_updates":
|
66 |
"n_steps": 5,
|
67 |
"gamma": 0.99,
|
68 |
"gae_lambda": 1.0,
|
@@ -72,7 +72,7 @@
|
|
72 |
"normalize_advantage": false,
|
73 |
"observation_space": {
|
74 |
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
-
":serialized:": "
|
76 |
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
"_shape": null,
|
78 |
"dtype": null,
|
@@ -80,7 +80,7 @@
|
|
80 |
},
|
81 |
"action_space": {
|
82 |
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
-
":serialized:": "
|
84 |
"dtype": "float32",
|
85 |
"_shape": [
|
86 |
3
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f06225680d0>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f06225577c0>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1684963072909033873,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
31 |
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAL4PRPtbokTqqkxI/L4PRPtbokTqqkxI/L4PRPtbokTqqkxI/L4PRPtbokTqqkxI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATHLbv/nXDT8Iysy/VkHRv+dq3T+BvJ+/0zebv8S9Ir46JF0/El8hv6zs2L0iVUY/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAvg9E+1uiROqqTEj+kdQS7TL8iuyfCsLsvg9E+1uiROqqTEj+kdQS7TL8iuyfCsLsvg9E+1uiROqqTEj+kdQS7TL8iuyfCsLsvg9E+1uiROqqTEj+kdQS7TL8iuyfCsLuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.40920398 0.0011132 0.5725657 ]\n [0.40920398 0.0011132 0.5725657 ]\n [0.40920398 0.0011132 0.5725657 ]\n [0.40920398 0.0011132 0.5725657 ]]",
|
38 |
+
"desired_goal": "[[-1.7144256 0.55407673 -1.5999155 ]\n [-1.6348064 1.7298249 -1.2479402 ]\n [-1.2126411 -0.15892702 0.863834 ]\n [-0.6303569 -0.10592017 0.7747365 ]]",
|
39 |
+
"observation": "[[ 0.40920398 0.0011132 0.5725657 -0.00202117 -0.00248333 -0.00539424]\n [ 0.40920398 0.0011132 0.5725657 -0.00202117 -0.00248333 -0.00539424]\n [ 0.40920398 0.0011132 0.5725657 -0.00202117 -0.00248333 -0.00539424]\n [ 0.40920398 0.0011132 0.5725657 -0.00202117 -0.00248333 -0.00539424]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAdBm7PT2ZbT2Mj38+54gFPYlMyL0RdDo9RKdwvYY1XT0f2Ow9vCyKu0kcXTybGcw8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.09135714 0.05800747 0.24957103]\n [ 0.03260126 -0.09780223 0.04552085]\n [-0.05875327 0.05400612 0.11564659]\n [-0.00421676 0.01349551 0.02491455]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQGt+/KXF/L+UhpRSlIwBbJRLMowBdJRHQKa4JL1VYIV1fZQoaAZoCWgPQwjfNH12wDX8v5SGlFKUaBVLMmgWR0Cmt+f5+H8CdX2UKGgGaAloD0MIl/+QfvtaAMCUhpRSlGgVSzJoFkdApretefI0ZXV9lChoBmgJaA9DCOIBZVOucADAlIaUUpRoFUsyaBZHQKa3cR/3Fkx1fZQoaAZoCWgPQwjcnEoGgOr2v5SGlFKUaBVLMmgWR0CmuZ+nQ6ZIdX2UKGgGaAloD0MIEXAIVWr2AMCUhpRSlGgVSzJoFkdAprli9oN/fHV9lChoBmgJaA9DCInqrYGtUvi/lIaUUpRoFUsyaBZHQKa5KClrM1V1fZQoaAZoCWgPQwj0UUZcANr6v5SGlFKUaBVLMmgWR0CmuO6XSjQBdX2UKGgGaAloD0MIvtu8cVLY+r+UhpRSlGgVSzJoFkdAprtcZxaPjnV9lChoBmgJaA9DCPAZidAINvq/lIaUUpRoFUsyaBZHQKa7H7Jnxrl1fZQoaAZoCWgPQwj/PXjt0kYEwJSGlFKUaBVLMmgWR0CmuuTj3mFKdX2UKGgGaAloD0MIeeblsPuO+r+UhpRSlGgVSzJoFkdAprqo6Mir1nV9lChoBmgJaA9DCLg+rDdqBf2/lIaUUpRoFUsyaBZHQKa84qCHymR1fZQoaAZoCWgPQwi7YduizLYQwJSGlFKUaBVLMmgWR0CmvKar3j+8dX2UKGgGaAloD0MIk1LQ7SUtBMCUhpRSlGgVSzJoFkdAprxsCgbp/3V9lChoBmgJaA9DCAfRWtHm+P6/lIaUUpRoFUsyaBZHQKa8MBjnV5N1fZQoaAZoCWgPQwi8df7tsl/6v5SGlFKUaBVLMmgWR0CmvnJ3os7NdX2UKGgGaAloD0MI16axvRb09r+UhpRSlGgVSzJoFkdApr42R1X/53V9lChoBmgJaA9DCKRRgZNtIA3AlIaUUpRoFUsyaBZHQKa9+6r/82t1fZQoaAZoCWgPQwj+YrZkVaQAwJSGlFKUaBVLMmgWR0Cmvb+TmnwYdX2UKGgGaAloD0MI5NpQMc6fA8CUhpRSlGgVSzJoFkdApsATHCGetnV9lChoBmgJaA9DCGfXvRWJyfq/lIaUUpRoFUsyaBZHQKa/1nvDxb11fZQoaAZoCWgPQwhj7e9sjx70v5SGlFKUaBVLMmgWR0Cmv5vFvQ4TdX2UKGgGaAloD0MIqrncYKiDCcCUhpRSlGgVSzJoFkdApr9fww0wanV9lChoBmgJaA9DCI+rkV1p2QHAlIaUUpRoFUsyaBZHQKbBmJtSAH51fZQoaAZoCWgPQwhV9l0R/A8AwJSGlFKUaBVLMmgWR0CmwVwHzH0cdX2UKGgGaAloD0MIxhnDnKDtB8CUhpRSlGgVSzJoFkdApsEhllK9PHV9lChoBmgJaA9DCBtIF5tWqgDAlIaUUpRoFUsyaBZHQKbA5aUzKtB1fZQoaAZoCWgPQwiXVdgMcGECwJSGlFKUaBVLMmgWR0CmwzHryDqXdX2UKGgGaAloD0MIGNLhIYwf9b+UhpRSlGgVSzJoFkdApsL1hw2l23V9lChoBmgJaA9DCHEd44qLI/i/lIaUUpRoFUsyaBZHQKbCuv3ai9J1fZQoaAZoCWgPQwh1yw7xDzsAwJSGlFKUaBVLMmgWR0Cmwn7CBPKudX2UKGgGaAloD0MINV8lH7vLBMCUhpRSlGgVSzJoFkdApsS3Ns3yZ3V9lChoBmgJaA9DCDigpSvYxgDAlIaUUpRoFUsyaBZHQKbEeoZQ53l1fZQoaAZoCWgPQwii0LLuH0sAwJSGlFKUaBVLMmgWR0CmxD+1jRUndX2UKGgGaAloD0MIV7Q5zm0iBMCUhpRSlGgVSzJoFkdApsQDiVB2OnV9lChoBmgJaA9DCFqD91W5kP2/lIaUUpRoFUsyaBZHQKbGM0WuX/p1fZQoaAZoCWgPQwhauKzCZgD4v5SGlFKUaBVLMmgWR0CmxfaYE4ecdX2UKGgGaAloD0MIBVH3AUht/r+UhpRSlGgVSzJoFkdApsW8GqxTsXV9lChoBmgJaA9DCANEwYwp2Pm/lIaUUpRoFUsyaBZHQKbFgBXjlxR1fZQoaAZoCWgPQwgkYkok0cv9v5SGlFKUaBVLMmgWR0CmxzwIMSbpdX2UKGgGaAloD0MImxvTE5a4AMCUhpRSlGgVSzJoFkdApsb+xD9fkXV9lChoBmgJaA9DCMucLouJzf2/lIaUUpRoFUsyaBZHQKbGw1gpjMF1fZQoaAZoCWgPQwjbGDvhJRgDwJSGlFKUaBVLMmgWR0CmxoaZ6UqydX2UKGgGaAloD0MIIlLTLqbZ97+UhpRSlGgVSzJoFkdApsgVGwzLwHV9lChoBmgJaA9DCOw00lJ5e/6/lIaUUpRoFUsyaBZHQKbH18twrDt1fZQoaAZoCWgPQwgtJjYf14b8v5SGlFKUaBVLMmgWR0Cmx5xg7YChdX2UKGgGaAloD0MI34rEBDUcA8CUhpRSlGgVSzJoFkdApsdfp2U0N3V9lChoBmgJaA9DCLd9j/rrlQDAlIaUUpRoFUsyaBZHQKbI7QTEit91fZQoaAZoCWgPQwjMCkW6nxMCwJSGlFKUaBVLMmgWR0CmyK+717IDdX2UKGgGaAloD0MIidAINq5/AMCUhpRSlGgVSzJoFkdApsh0fA9FF3V9lChoBmgJaA9DCJg1scBXNP+/lIaUUpRoFUsyaBZHQKbIN+CK77N1fZQoaAZoCWgPQwh4YADhQ0n6v5SGlFKUaBVLMmgWR0CmyctMwlBydX2UKGgGaAloD0MI8zl3u156CsCUhpRSlGgVSzJoFkdApsmOFL39JnV9lChoBmgJaA9DCJoiwOld/Pq/lIaUUpRoFUsyaBZHQKbJUtf5ULl1fZQoaAZoCWgPQwjURJ+PMsICwJSGlFKUaBVLMmgWR0CmyRaLfk3kdX2UKGgGaAloD0MIuhCrP8KwAcCUhpRSlGgVSzJoFkdApsqjqMWGh3V9lChoBmgJaA9DCC18fa1LbQHAlIaUUpRoFUsyaBZHQKbKZpkf9xZ1fZQoaAZoCWgPQwhDU3b6QZ3+v5SGlFKUaBVLMmgWR0Cmyiso+fRNdX2UKGgGaAloD0MISl6dY0AWAMCUhpRSlGgVSzJoFkdApsnub9ZRsXV9lChoBmgJaA9DCGufjscM1Pq/lIaUUpRoFUsyaBZHQKbLkXAM2FZ1fZQoaAZoCWgPQwhEpREz+5wJwJSGlFKUaBVLMmgWR0Cmy1Q/X5FgdX2UKGgGaAloD0MIs3xdhv90+r+UhpRSlGgVSzJoFkdApssZBLPD53V9lChoBmgJaA9DCCtQi8HDNPi/lIaUUpRoFUsyaBZHQKbK3IAfdRB1fZQoaAZoCWgPQwg7pu7KLngFwJSGlFKUaBVLMmgWR0CmzHDJU5uJdX2UKGgGaAloD0MIwXCuYYbmBMCUhpRSlGgVSzJoFkdApswzdcjZ+XV9lChoBmgJaA9DCLNcNjrnJ/2/lIaUUpRoFUsyaBZHQKbL+AJb+tN1fZQoaAZoCWgPQwisqME0DB8IwJSGlFKUaBVLMmgWR0Cmy7syi22HdX2UKGgGaAloD0MISGx3D9CdBcCUhpRSlGgVSzJoFkdAps1H7rLQonV9lChoBmgJaA9DCAlwehfvpwHAlIaUUpRoFUsyaBZHQKbNCpobn5l1fZQoaAZoCWgPQwjNWDSdnYz/v5SGlFKUaBVLMmgWR0CmzM9BKL88dX2UKGgGaAloD0MIPiZSms1jAcCUhpRSlGgVSzJoFkdApsySa1Cw8nV9lChoBmgJaA9DCMdim1Q0VgvAlIaUUpRoFUsyaBZHQKbOKYVIqb11fZQoaAZoCWgPQwi2oWKcv4kMwJSGlFKUaBVLMmgWR0CmzewtapxWdX2UKGgGaAloD0MI2iCTjJyFBcCUhpRSlGgVSzJoFkdAps2wqiGnGnV9lChoBmgJaA9DCHWUg9kEGPq/lIaUUpRoFUsyaBZHQKbNc94/u9h1fZQoaAZoCWgPQwh0DMhe7/4AwJSGlFKUaBVLMmgWR0Cmzv6dUbT+dX2UKGgGaAloD0MIHVn5ZTAGCcCUhpRSlGgVSzJoFkdAps7BZjhDPXV9lChoBmgJaA9DCHjxftx+mQXAlIaUUpRoFUsyaBZHQKbOhgP3BYV1fZQoaAZoCWgPQwhkIM8u37oBwJSGlFKUaBVLMmgWR0CmzklPSDywdX2UKGgGaAloD0MIotReRNuRAsCUhpRSlGgVSzJoFkdAps/ZqIrOJXV9lChoBmgJaA9DCB9nmrD95Pm/lIaUUpRoFUsyaBZHQKbPnIsAeaN1fZQoaAZoCWgPQwjhXpm36voGwJSGlFKUaBVLMmgWR0Cmz2HTZxrBdX2UKGgGaAloD0MI6j2V056yAMCUhpRSlGgVSzJoFkdAps8lCeEqUnV9lChoBmgJaA9DCDxsIjMXOArAlIaUUpRoFUsyaBZHQKbQtbUwztV1fZQoaAZoCWgPQwi4Pqw3agUCwJSGlFKUaBVLMmgWR0Cm0HhakhzOdX2UKGgGaAloD0MI3NjsSPVd8b+UhpRSlGgVSzJoFkdAptA9FYuCgHV9lChoBmgJaA9DCNMuppnuNf+/lIaUUpRoFUsyaBZHQKbQAFGG21F1fZQoaAZoCWgPQwg8aHbdW9H/v5SGlFKUaBVLMmgWR0Cm0Y+BpYcOdX2UKGgGaAloD0MIf6SIDKu4/b+UhpRSlGgVSzJoFkdAptFSPyTY/XV9lChoBmgJaA9DCHdqLjcYSgHAlIaUUpRoFUsyaBZHQKbRFsguAZt1fZQoaAZoCWgPQwhslPWbiSkCwJSGlFKUaBVLMmgWR0Cm0Nn7YTTOdX2UKGgGaAloD0MIHH433bIjAcCUhpRSlGgVSzJoFkdAptJn2mHgxnV9lChoBmgJaA9DCPBPqRJlr/q/lIaUUpRoFUsyaBZHQKbSKo73fyh1fZQoaAZoCWgPQwgzpmCNsykHwJSGlFKUaBVLMmgWR0Cm0e845tFbdX2UKGgGaAloD0MIC9C2mnVGBcCUhpRSlGgVSzJoFkdAptGydOIqLHV9lChoBmgJaA9DCFT+tbxyPf6/lIaUUpRoFUsyaBZHQKbTR24d6s11fZQoaAZoCWgPQwhtqBjnbwL/v5SGlFKUaBVLMmgWR0Cm0wpSR8txdX2UKGgGaAloD0MIibFMv0Q897+UhpRSlGgVSzJoFkdAptLO5QP7N3V9lChoBmgJaA9DCDkn9tA+1vu/lIaUUpRoFUsyaBZHQKbSkmtyPuJ1ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
+
"_n_updates": 50000,
|
66 |
"n_steps": 5,
|
67 |
"gamma": 0.99,
|
68 |
"gae_lambda": 1.0,
|
|
|
72 |
"normalize_advantage": false,
|
73 |
"observation_space": {
|
74 |
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
76 |
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
"_shape": null,
|
78 |
"dtype": null,
|
|
|
80 |
},
|
81 |
"action_space": {
|
82 |
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
"dtype": "float32",
|
85 |
"_shape": [
|
86 |
3
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dac38e6dae204a49f0b264e34027013df5d4c3e0b9596ef93376e4fc012cd545
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b0b3399f929b4b4559f96ce1c0eab2cf79c2afd16f4d166b27949ede6821229a
|
3 |
size 46014
|
a2c-PandaReachDense-v2/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
- OS: Linux-5.
|
2 |
-
- Python: 3.
|
3 |
- Stable-Baselines3: 1.8.0
|
4 |
-
- PyTorch: 2.0.
|
5 |
- GPU Enabled: True
|
6 |
- Numpy: 1.22.4
|
7 |
- Gym: 0.21.0
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
- GPU Enabled: True
|
6 |
- Numpy: 1.22.4
|
7 |
- Gym: 0.21.0
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1792ac35e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1792ac4500>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681217332620792045, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAwbLIPmQmrTxfngw/wbLIPmQmrTxfngw/wbLIPmQmrTxfngw/wbLIPmQmrTxfngw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATey6vwGUQr/T6ou/MhWBv7cN1D7oevA+DqzSP20aFb/Blpw/xmDEP/4SPj4pvii/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADBssg+ZCatPF+eDD/0DhO8MJuLunwLHzvBssg+ZCatPF+eDD/0DhO8MJuLunwLHzvBssg+ZCatPF+eDD/0DhO8MJuLunwLHzvBssg+ZCatPF+eDD/0DhO8MJuLunwLHzuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.39198878 0.02113647 0.54929155]\n [0.39198878 0.02113647 0.54929155]\n [0.39198878 0.02113647 0.54929155]\n [0.39198878 0.02113647 0.54929155]]", "desired_goal": "[[-1.4603363 -0.76007086 -1.0931038 ]\n [-1.0084593 0.41416714 0.4696877 ]\n [ 1.6458757 -0.5824345 1.2233506 ]\n [ 1.5342033 0.18561932 -0.6591516 ]]", "observation": "[[ 0.39198878 0.02113647 0.54929155 -0.00897573 -0.00106511 0.00242683]\n [ 0.39198878 0.02113647 0.54929155 -0.00897573 -0.00106511 0.00242683]\n [ 0.39198878 0.02113647 0.54929155 -0.00897573 -0.00106511 0.00242683]\n [ 0.39198878 0.02113647 0.54929155 -0.00897573 -0.00106511 0.00242683]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAG0faPR6bhjutX3U+D7PFPQSYBLwZI5Y+0bYWvQ7FAr3aEsE8ok1XvQ5tC76D+A0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.10658094 0.00410785 0.23962279]\n [ 0.09653293 -0.00809288 0.29323652]\n [-0.03679544 -0.03192621 0.02356856]\n [-0.05256427 -0.1361582 0.13864331]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgsmNImvNAMCUhpRSlIwBbJRLMowBdJRHQLVpYpON5t51fZQoaAZoCWgPQwjUYvAw7VsGwJSGlFKUaBVLMmgWR0C1aTgq7ROUdX2UKGgGaAloD0MIHa9A9KTM+7+UhpRSlGgVSzJoFkdAtWkMdjoZAXV9lChoBmgJaA9DCEsDP6phfxHAlIaUUpRoFUsyaBZHQLVo4VhCtzV1fZQoaAZoCWgPQwjqA8k7h9ITwJSGlFKUaBVLMmgWR0C1adBgNPP+dX2UKGgGaAloD0MI6pJxjGTvBcCUhpRSlGgVSzJoFkdAtWmmIAOrhnV9lChoBmgJaA9DCLB2FOeogwXAlIaUUpRoFUsyaBZHQLVpemnwXqJ1fZQoaAZoCWgPQwjik04kmPoRwJSGlFKUaBVLMmgWR0C1aU9JOFg2dX2UKGgGaAloD0MIxsIQOX39BcCUhpRSlGgVSzJoFkdAtWpAFzMibHV9lChoBmgJaA9DCFiNJayNcQrAlIaUUpRoFUsyaBZHQLVqFaaTfSB1fZQoaAZoCWgPQwjiyAORRToFwJSGlFKUaBVLMmgWR0C1aeoSYgJUdX2UKGgGaAloD0MIpRMJppoZDcCUhpRSlGgVSzJoFkdAtWm+3VkMC3V9lChoBmgJaA9DCKcgPxu5DgLAlIaUUpRoFUsyaBZHQLVqr1m8M/h1fZQoaAZoCWgPQwipT3KHTYQHwJSGlFKUaBVLMmgWR0C1aoTlxOtXdX2UKGgGaAloD0MINuUK73LBEsCUhpRSlGgVSzJoFkdAtWpZNj9XLnV9lChoBmgJaA9DCAEUI0vm2AzAlIaUUpRoFUsyaBZHQLVqLikfs/p1fZQoaAZoCWgPQwjGFKxxNh0RwJSGlFKUaBVLMmgWR0C1axxxT850dX2UKGgGaAloD0MInkXvVMAdB8CUhpRSlGgVSzJoFkdAtWryAjIJaHV9lChoBmgJaA9DCN1AgXfyiQ3AlIaUUpRoFUsyaBZHQLVqxk8zQ/p1fZQoaAZoCWgPQwjO/kC5bV8FwJSGlFKUaBVLMmgWR0C1apsmfGuLdX2UKGgGaAloD0MIg4dp39z/BsCUhpRSlGgVSzJoFkdAtWvLJJXhfnV9lChoBmgJaA9DCDc2O1J9BwXAlIaUUpRoFUsyaBZHQLVroSjQAuJ1fZQoaAZoCWgPQwiSrS6nBOQDwJSGlFKUaBVLMmgWR0C1a3XE61b8dX2UKGgGaAloD0MIuatXkdGBAcCUhpRSlGgVSzJoFkdAtWtK6shgV3V9lChoBmgJaA9DCOaSqu0m+BDAlIaUUpRoFUsyaBZHQLVsfy0rsjV1fZQoaAZoCWgPQwh3EDtT6GwQwJSGlFKUaBVLMmgWR0C1bFUOuq3mdX2UKGgGaAloD0MItcNfkzWKDcCUhpRSlGgVSzJoFkdAtWwppDeCTXV9lChoBmgJaA9DCFsjgnFw6QLAlIaUUpRoFUsyaBZHQLVr/rDqGDd1fZQoaAZoCWgPQwh/UBcplEULwJSGlFKUaBVLMmgWR0C1bS8enyd4dX2UKGgGaAloD0MIexUZHZCEA8CUhpRSlGgVSzJoFkdAtW0E9wFTvXV9lChoBmgJaA9DCLQ7pBggEQTAlIaUUpRoFUsyaBZHQLVs2YL9deJ1fZQoaAZoCWgPQwhjuaXVkLgQwJSGlFKUaBVLMmgWR0C1bK6cNH6NdX2UKGgGaAloD0MI+g5+4gC6BMCUhpRSlGgVSzJoFkdAtW3iM72crnV9lChoBmgJaA9DCM2spYC0fwbAlIaUUpRoFUsyaBZHQLVtuFG5MDh1fZQoaAZoCWgPQwgfuwuUFJgPwJSGlFKUaBVLMmgWR0C1bY0BOpKjdX2UKGgGaAloD0MIbCIzF7gMEMCUhpRSlGgVSzJoFkdAtW1iGbkOqnV9lChoBmgJaA9DCCF3EaYoVxDAlIaUUpRoFUsyaBZHQLVulnZ00WN1fZQoaAZoCWgPQwj5vOKpR7oFwJSGlFKUaBVLMmgWR0C1bmxkd3jddX2UKGgGaAloD0MI8DMuHAhpCcCUhpRSlGgVSzJoFkdAtW5BEroW6HV9lChoBmgJaA9DCIeiQJ/IoxDAlIaUUpRoFUsyaBZHQLVuFid8Rcx1fZQoaAZoCWgPQwiwVYLF4QwFwJSGlFKUaBVLMmgWR0C1b0tehPCVdX2UKGgGaAloD0MIeAlOfSC5EMCUhpRSlGgVSzJoFkdAtW8hN34bj3V9lChoBmgJaA9DCDFdiNUfQQjAlIaUUpRoFUsyaBZHQLVu9eNDMNd1fZQoaAZoCWgPQwjzAuyjUzcGwJSGlFKUaBVLMmgWR0C1bssQEpy7dX2UKGgGaAloD0MI0lPkEHGTCcCUhpRSlGgVSzJoFkdAtXAGaG5+Y3V9lChoBmgJaA9DCCLH1jOEsxDAlIaUUpRoFUsyaBZHQLVv3EF4cFR1fZQoaAZoCWgPQwiwjXiym1kFwJSGlFKUaBVLMmgWR0C1b7ErGza9dX2UKGgGaAloD0MISwUVVb9yCcCUhpRSlGgVSzJoFkdAtW+GScLBsXV9lChoBmgJaA9DCBAk7xzKEAXAlIaUUpRoFUsyaBZHQLVwnkVN5+p1fZQoaAZoCWgPQwh7Mv/om0QTwJSGlFKUaBVLMmgWR0C1cHP/rB0qdX2UKGgGaAloD0MIa378pUUdEMCUhpRSlGgVSzJoFkdAtXBIXMyJsXV9lChoBmgJaA9DCChlUkMbIAjAlIaUUpRoFUsyaBZHQLVwHV3EAHV1fZQoaAZoCWgPQwirsBnggowTwJSGlFKUaBVLMmgWR0C1cQ1cdHUddX2UKGgGaAloD0MIXkpdMo7xEsCUhpRSlGgVSzJoFkdAtXDi9AX2unV9lChoBmgJaA9DCDYgQlw5KxHAlIaUUpRoFUsyaBZHQLVwt0NSZSh1fZQoaAZoCWgPQwiMnfASnHoJwJSGlFKUaBVLMmgWR0C1cIwfU4JedX2UKGgGaAloD0MIQukLIee9EsCUhpRSlGgVSzJoFkdAtXF/6XSjQHV9lChoBmgJaA9DCMxDpnwICgjAlIaUUpRoFUsyaBZHQLVxVaSLZSN1fZQoaAZoCWgPQwjmzHaFPjgDwJSGlFKUaBVLMmgWR0C1cSn/HYHxdX2UKGgGaAloD0MI4iNiSiRRB8CUhpRSlGgVSzJoFkdAtXD+2H+IdnV9lChoBmgJaA9DCJg1scBXVArAlIaUUpRoFUsyaBZHQLVx81EVnEl1fZQoaAZoCWgPQwghsHJokU0MwJSGlFKUaBVLMmgWR0C1ccjvZyuIdX2UKGgGaAloD0MIhiAHJcx0CsCUhpRSlGgVSzJoFkdAtXGdOclPanV9lChoBmgJaA9DCGjMJOoFfwfAlIaUUpRoFUsyaBZHQLVxciRGMGZ1fZQoaAZoCWgPQwjU8C2sG88CwJSGlFKUaBVLMmgWR0C1cmOIInjRdX2UKGgGaAloD0MIQdR9AFJbC8CUhpRSlGgVSzJoFkdAtXI5I+W4VnV9lChoBmgJaA9DCKSoM/eQMAvAlIaUUpRoFUsyaBZHQLVyDXu3MIN1fZQoaAZoCWgPQwjWHvZCATsKwJSGlFKUaBVLMmgWR0C1ceJ2U0N0dX2UKGgGaAloD0MIyxRzEHSUDcCUhpRSlGgVSzJoFkdAtXLWknCwbHV9lChoBmgJaA9DCD52FygpEArAlIaUUpRoFUsyaBZHQLVyrDXe3x51fZQoaAZoCWgPQwiAngYMkj4JwJSGlFKUaBVLMmgWR0C1coCQHRkVdX2UKGgGaAloD0MISOAPP//9A8CUhpRSlGgVSzJoFkdAtXJVgVoHs3V9lChoBmgJaA9DCH8yxofZKw7AlIaUUpRoFUsyaBZHQLVzRiS7oSt1fZQoaAZoCWgPQwgj88gfDGwQwJSGlFKUaBVLMmgWR0C1cxvDtPYWdX2UKGgGaAloD0MIiIIZU7BGCMCUhpRSlGgVSzJoFkdAtXLwIY3vQXV9lChoBmgJaA9DCATidf2CfQPAlIaUUpRoFUsyaBZHQLVyxPfKp1l1fZQoaAZoCWgPQwhWtg95y7UKwJSGlFKUaBVLMmgWR0C1c70yYXwcdX2UKGgGaAloD0MIRX9o5sn1AsCUhpRSlGgVSzJoFkdAtXOS94/u9nV9lChoBmgJaA9DCH6nyYy3RRLAlIaUUpRoFUsyaBZHQLVzZ0mtyPx1fZQoaAZoCWgPQwjhJM0f09oFwJSGlFKUaBVLMmgWR0C1czwevIOpdX2UKGgGaAloD0MIdGA5QgYSBcCUhpRSlGgVSzJoFkdAtXQvYsd1dXV9lChoBmgJaA9DCBQhdTv7ygnAlIaUUpRoFUsyaBZHQLV0BRMvh611fZQoaAZoCWgPQwi0WIrkKwELwJSGlFKUaBVLMmgWR0C1c9lfNRm9dX2UKGgGaAloD0MIHAx1WOF2DMCUhpRSlGgVSzJoFkdAtXOuRq46O3V9lChoBmgJaA9DCCl2NA71GwfAlIaUUpRoFUsyaBZHQLV0n1twaR91fZQoaAZoCWgPQwjp8Xub/nwRwJSGlFKUaBVLMmgWR0C1dHUaAFxGdX2UKGgGaAloD0MIdA0zNJ6oCsCUhpRSlGgVSzJoFkdAtXRJhUipvXV9lChoBmgJaA9DCAQeGED4UAPAlIaUUpRoFUsyaBZHQLV0Hnyup0h1fZQoaAZoCWgPQwgHswkwLJ8KwJSGlFKUaBVLMmgWR0C1dQ7TH80ldX2UKGgGaAloD0MIrU7OUNyRB8CUhpRSlGgVSzJoFkdAtXTkaWHDaXV9lChoBmgJaA9DCA72JobkhBLAlIaUUpRoFUsyaBZHQLV0uNOuaF51fZQoaAZoCWgPQwhDq5MzFNcCwJSGlFKUaBVLMmgWR0C1dI2tdRixdX2UKGgGaAloD0MIcvkP6bcPEMCUhpRSlGgVSzJoFkdAtXV+K77KrHV9lChoBmgJaA9DCHDP86eN2hHAlIaUUpRoFUsyaBZHQLV1U7ojfN11fZQoaAZoCWgPQwhMM93rpI4QwJSGlFKUaBVLMmgWR0C1dSf9P1tgdX2UKGgGaAloD0MIQ1N2+kGdC8CUhpRSlGgVSzJoFkdAtXT8xgy/K3V9lChoBmgJaA9DCGggls0csgnAlIaUUpRoFUsyaBZHQLV17DdP+GZ1fZQoaAZoCWgPQwikq3R3nU0DwJSGlFKUaBVLMmgWR0C1dcHGXHBDdX2UKGgGaAloD0MI2ubG9ITFBsCUhpRSlGgVSzJoFkdAtXWWDYh+v3V9lChoBmgJaA9DCGQhOgSO5ArAlIaUUpRoFUsyaBZHQLV1atZFG5N1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f06225680d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f06225577c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684963072909033873, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAL4PRPtbokTqqkxI/L4PRPtbokTqqkxI/L4PRPtbokTqqkxI/L4PRPtbokTqqkxI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATHLbv/nXDT8Iysy/VkHRv+dq3T+BvJ+/0zebv8S9Ir46JF0/El8hv6zs2L0iVUY/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAvg9E+1uiROqqTEj+kdQS7TL8iuyfCsLsvg9E+1uiROqqTEj+kdQS7TL8iuyfCsLsvg9E+1uiROqqTEj+kdQS7TL8iuyfCsLsvg9E+1uiROqqTEj+kdQS7TL8iuyfCsLuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.40920398 0.0011132 0.5725657 ]\n [0.40920398 0.0011132 0.5725657 ]\n [0.40920398 0.0011132 0.5725657 ]\n [0.40920398 0.0011132 0.5725657 ]]", "desired_goal": "[[-1.7144256 0.55407673 -1.5999155 ]\n [-1.6348064 1.7298249 -1.2479402 ]\n [-1.2126411 -0.15892702 0.863834 ]\n [-0.6303569 -0.10592017 0.7747365 ]]", "observation": "[[ 0.40920398 0.0011132 0.5725657 -0.00202117 -0.00248333 -0.00539424]\n [ 0.40920398 0.0011132 0.5725657 -0.00202117 -0.00248333 -0.00539424]\n [ 0.40920398 0.0011132 0.5725657 -0.00202117 -0.00248333 -0.00539424]\n [ 0.40920398 0.0011132 0.5725657 -0.00202117 -0.00248333 -0.00539424]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAdBm7PT2ZbT2Mj38+54gFPYlMyL0RdDo9RKdwvYY1XT0f2Ow9vCyKu0kcXTybGcw8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.09135714 0.05800747 0.24957103]\n [ 0.03260126 -0.09780223 0.04552085]\n [-0.05875327 0.05400612 0.11564659]\n [-0.00421676 0.01349551 0.02491455]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQGt+/KXF/L+UhpRSlIwBbJRLMowBdJRHQKa4JL1VYIV1fZQoaAZoCWgPQwjfNH12wDX8v5SGlFKUaBVLMmgWR0Cmt+f5+H8CdX2UKGgGaAloD0MIl/+QfvtaAMCUhpRSlGgVSzJoFkdApretefI0ZXV9lChoBmgJaA9DCOIBZVOucADAlIaUUpRoFUsyaBZHQKa3cR/3Fkx1fZQoaAZoCWgPQwjcnEoGgOr2v5SGlFKUaBVLMmgWR0CmuZ+nQ6ZIdX2UKGgGaAloD0MIEXAIVWr2AMCUhpRSlGgVSzJoFkdAprli9oN/fHV9lChoBmgJaA9DCInqrYGtUvi/lIaUUpRoFUsyaBZHQKa5KClrM1V1fZQoaAZoCWgPQwj0UUZcANr6v5SGlFKUaBVLMmgWR0CmuO6XSjQBdX2UKGgGaAloD0MIvtu8cVLY+r+UhpRSlGgVSzJoFkdAprtcZxaPjnV9lChoBmgJaA9DCPAZidAINvq/lIaUUpRoFUsyaBZHQKa7H7Jnxrl1fZQoaAZoCWgPQwj/PXjt0kYEwJSGlFKUaBVLMmgWR0CmuuTj3mFKdX2UKGgGaAloD0MIeeblsPuO+r+UhpRSlGgVSzJoFkdAprqo6Mir1nV9lChoBmgJaA9DCLg+rDdqBf2/lIaUUpRoFUsyaBZHQKa84qCHymR1fZQoaAZoCWgPQwi7YduizLYQwJSGlFKUaBVLMmgWR0CmvKar3j+8dX2UKGgGaAloD0MIk1LQ7SUtBMCUhpRSlGgVSzJoFkdAprxsCgbp/3V9lChoBmgJaA9DCAfRWtHm+P6/lIaUUpRoFUsyaBZHQKa8MBjnV5N1fZQoaAZoCWgPQwi8df7tsl/6v5SGlFKUaBVLMmgWR0CmvnJ3os7NdX2UKGgGaAloD0MI16axvRb09r+UhpRSlGgVSzJoFkdApr42R1X/53V9lChoBmgJaA9DCKRRgZNtIA3AlIaUUpRoFUsyaBZHQKa9+6r/82t1fZQoaAZoCWgPQwj+YrZkVaQAwJSGlFKUaBVLMmgWR0Cmvb+TmnwYdX2UKGgGaAloD0MI5NpQMc6fA8CUhpRSlGgVSzJoFkdApsATHCGetnV9lChoBmgJaA9DCGfXvRWJyfq/lIaUUpRoFUsyaBZHQKa/1nvDxb11fZQoaAZoCWgPQwhj7e9sjx70v5SGlFKUaBVLMmgWR0Cmv5vFvQ4TdX2UKGgGaAloD0MIqrncYKiDCcCUhpRSlGgVSzJoFkdApr9fww0wanV9lChoBmgJaA9DCI+rkV1p2QHAlIaUUpRoFUsyaBZHQKbBmJtSAH51fZQoaAZoCWgPQwhV9l0R/A8AwJSGlFKUaBVLMmgWR0CmwVwHzH0cdX2UKGgGaAloD0MIxhnDnKDtB8CUhpRSlGgVSzJoFkdApsEhllK9PHV9lChoBmgJaA9DCBtIF5tWqgDAlIaUUpRoFUsyaBZHQKbA5aUzKtB1fZQoaAZoCWgPQwiXVdgMcGECwJSGlFKUaBVLMmgWR0CmwzHryDqXdX2UKGgGaAloD0MIGNLhIYwf9b+UhpRSlGgVSzJoFkdApsL1hw2l23V9lChoBmgJaA9DCHEd44qLI/i/lIaUUpRoFUsyaBZHQKbCuv3ai9J1fZQoaAZoCWgPQwh1yw7xDzsAwJSGlFKUaBVLMmgWR0Cmwn7CBPKudX2UKGgGaAloD0MINV8lH7vLBMCUhpRSlGgVSzJoFkdApsS3Ns3yZ3V9lChoBmgJaA9DCDigpSvYxgDAlIaUUpRoFUsyaBZHQKbEeoZQ53l1fZQoaAZoCWgPQwii0LLuH0sAwJSGlFKUaBVLMmgWR0CmxD+1jRUndX2UKGgGaAloD0MIV7Q5zm0iBMCUhpRSlGgVSzJoFkdApsQDiVB2OnV9lChoBmgJaA9DCFqD91W5kP2/lIaUUpRoFUsyaBZHQKbGM0WuX/p1fZQoaAZoCWgPQwhauKzCZgD4v5SGlFKUaBVLMmgWR0CmxfaYE4ecdX2UKGgGaAloD0MIBVH3AUht/r+UhpRSlGgVSzJoFkdApsW8GqxTsXV9lChoBmgJaA9DCANEwYwp2Pm/lIaUUpRoFUsyaBZHQKbFgBXjlxR1fZQoaAZoCWgPQwgkYkok0cv9v5SGlFKUaBVLMmgWR0CmxzwIMSbpdX2UKGgGaAloD0MImxvTE5a4AMCUhpRSlGgVSzJoFkdApsb+xD9fkXV9lChoBmgJaA9DCMucLouJzf2/lIaUUpRoFUsyaBZHQKbGw1gpjMF1fZQoaAZoCWgPQwjbGDvhJRgDwJSGlFKUaBVLMmgWR0CmxoaZ6UqydX2UKGgGaAloD0MIIlLTLqbZ97+UhpRSlGgVSzJoFkdApsgVGwzLwHV9lChoBmgJaA9DCOw00lJ5e/6/lIaUUpRoFUsyaBZHQKbH18twrDt1fZQoaAZoCWgPQwgtJjYf14b8v5SGlFKUaBVLMmgWR0Cmx5xg7YChdX2UKGgGaAloD0MI34rEBDUcA8CUhpRSlGgVSzJoFkdApsdfp2U0N3V9lChoBmgJaA9DCLd9j/rrlQDAlIaUUpRoFUsyaBZHQKbI7QTEit91fZQoaAZoCWgPQwjMCkW6nxMCwJSGlFKUaBVLMmgWR0CmyK+717IDdX2UKGgGaAloD0MIidAINq5/AMCUhpRSlGgVSzJoFkdApsh0fA9FF3V9lChoBmgJaA9DCJg1scBXNP+/lIaUUpRoFUsyaBZHQKbIN+CK77N1fZQoaAZoCWgPQwh4YADhQ0n6v5SGlFKUaBVLMmgWR0CmyctMwlBydX2UKGgGaAloD0MI8zl3u156CsCUhpRSlGgVSzJoFkdApsmOFL39JnV9lChoBmgJaA9DCJoiwOld/Pq/lIaUUpRoFUsyaBZHQKbJUtf5ULl1fZQoaAZoCWgPQwjURJ+PMsICwJSGlFKUaBVLMmgWR0CmyRaLfk3kdX2UKGgGaAloD0MIuhCrP8KwAcCUhpRSlGgVSzJoFkdApsqjqMWGh3V9lChoBmgJaA9DCC18fa1LbQHAlIaUUpRoFUsyaBZHQKbKZpkf9xZ1fZQoaAZoCWgPQwhDU3b6QZ3+v5SGlFKUaBVLMmgWR0Cmyiso+fRNdX2UKGgGaAloD0MISl6dY0AWAMCUhpRSlGgVSzJoFkdApsnub9ZRsXV9lChoBmgJaA9DCGufjscM1Pq/lIaUUpRoFUsyaBZHQKbLkXAM2FZ1fZQoaAZoCWgPQwhEpREz+5wJwJSGlFKUaBVLMmgWR0Cmy1Q/X5FgdX2UKGgGaAloD0MIs3xdhv90+r+UhpRSlGgVSzJoFkdApssZBLPD53V9lChoBmgJaA9DCCtQi8HDNPi/lIaUUpRoFUsyaBZHQKbK3IAfdRB1fZQoaAZoCWgPQwg7pu7KLngFwJSGlFKUaBVLMmgWR0CmzHDJU5uJdX2UKGgGaAloD0MIwXCuYYbmBMCUhpRSlGgVSzJoFkdApswzdcjZ+XV9lChoBmgJaA9DCLNcNjrnJ/2/lIaUUpRoFUsyaBZHQKbL+AJb+tN1fZQoaAZoCWgPQwisqME0DB8IwJSGlFKUaBVLMmgWR0Cmy7syi22HdX2UKGgGaAloD0MISGx3D9CdBcCUhpRSlGgVSzJoFkdAps1H7rLQonV9lChoBmgJaA9DCAlwehfvpwHAlIaUUpRoFUsyaBZHQKbNCpobn5l1fZQoaAZoCWgPQwjNWDSdnYz/v5SGlFKUaBVLMmgWR0CmzM9BKL88dX2UKGgGaAloD0MIPiZSms1jAcCUhpRSlGgVSzJoFkdApsySa1Cw8nV9lChoBmgJaA9DCMdim1Q0VgvAlIaUUpRoFUsyaBZHQKbOKYVIqb11fZQoaAZoCWgPQwi2oWKcv4kMwJSGlFKUaBVLMmgWR0CmzewtapxWdX2UKGgGaAloD0MI2iCTjJyFBcCUhpRSlGgVSzJoFkdAps2wqiGnGnV9lChoBmgJaA9DCHWUg9kEGPq/lIaUUpRoFUsyaBZHQKbNc94/u9h1fZQoaAZoCWgPQwh0DMhe7/4AwJSGlFKUaBVLMmgWR0Cmzv6dUbT+dX2UKGgGaAloD0MIHVn5ZTAGCcCUhpRSlGgVSzJoFkdAps7BZjhDPXV9lChoBmgJaA9DCHjxftx+mQXAlIaUUpRoFUsyaBZHQKbOhgP3BYV1fZQoaAZoCWgPQwhkIM8u37oBwJSGlFKUaBVLMmgWR0CmzklPSDywdX2UKGgGaAloD0MIotReRNuRAsCUhpRSlGgVSzJoFkdAps/ZqIrOJXV9lChoBmgJaA9DCB9nmrD95Pm/lIaUUpRoFUsyaBZHQKbPnIsAeaN1fZQoaAZoCWgPQwjhXpm36voGwJSGlFKUaBVLMmgWR0Cmz2HTZxrBdX2UKGgGaAloD0MI6j2V056yAMCUhpRSlGgVSzJoFkdAps8lCeEqUnV9lChoBmgJaA9DCDxsIjMXOArAlIaUUpRoFUsyaBZHQKbQtbUwztV1fZQoaAZoCWgPQwi4Pqw3agUCwJSGlFKUaBVLMmgWR0Cm0HhakhzOdX2UKGgGaAloD0MI3NjsSPVd8b+UhpRSlGgVSzJoFkdAptA9FYuCgHV9lChoBmgJaA9DCNMuppnuNf+/lIaUUpRoFUsyaBZHQKbQAFGG21F1fZQoaAZoCWgPQwg8aHbdW9H/v5SGlFKUaBVLMmgWR0Cm0Y+BpYcOdX2UKGgGaAloD0MIf6SIDKu4/b+UhpRSlGgVSzJoFkdAptFSPyTY/XV9lChoBmgJaA9DCHdqLjcYSgHAlIaUUpRoFUsyaBZHQKbRFsguAZt1fZQoaAZoCWgPQwhslPWbiSkCwJSGlFKUaBVLMmgWR0Cm0Nn7YTTOdX2UKGgGaAloD0MIHH433bIjAcCUhpRSlGgVSzJoFkdAptJn2mHgxnV9lChoBmgJaA9DCPBPqRJlr/q/lIaUUpRoFUsyaBZHQKbSKo73fyh1fZQoaAZoCWgPQwgzpmCNsykHwJSGlFKUaBVLMmgWR0Cm0e845tFbdX2UKGgGaAloD0MIC9C2mnVGBcCUhpRSlGgVSzJoFkdAptGydOIqLHV9lChoBmgJaA9DCFT+tbxyPf6/lIaUUpRoFUsyaBZHQKbTR24d6s11fZQoaAZoCWgPQwhtqBjnbwL/v5SGlFKUaBVLMmgWR0Cm0wpSR8txdX2UKGgGaAloD0MIibFMv0Q897+UhpRSlGgVSzJoFkdAptLO5QP7N3V9lChoBmgJaA9DCDkn9tA+1vu/lIaUUpRoFUsyaBZHQKbSkmtyPuJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -1.9233703812118619, "std_reward": 0.4783032576242008, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-24T22:09:39.407541"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd13dc64db8e7434e55d73dc440e37bbf3cf79f12f0c54d3b7f9d63e715d3e21
|
3 |
+
size 2387
|