Llama-31-8B_task-1_120-samples_config-2

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the GaetanMichelet/chat-60_ft_task-1 and the GaetanMichelet/chat-120_ft_task-1 datasets. It achieves the following results on the evaluation set:

  • Loss: 1.2347

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss
2.1077 0.9091 5 2.0275
1.775 2.0 11 1.6422
1.4756 2.9091 16 1.5183
1.3188 4.0 22 1.3611
1.2525 4.9091 27 1.2826
1.0827 6.0 33 1.2347
0.886 6.9091 38 1.2388
0.7475 8.0 44 1.3559
0.5298 8.9091 49 1.4768
0.313 10.0 55 1.7835
0.183 10.9091 60 2.2179
0.0808 12.0 66 2.5562
0.0522 12.9091 71 2.7622

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for GaetanMichelet/Llama-31-8B_task-1_120-samples_config-2

Adapter
(583)
this model

Collections including GaetanMichelet/Llama-31-8B_task-1_120-samples_config-2