Configurations choice
Collection
Choice of configuration based on the results of different fine-tuning. All provide mor or less same results but 1 and 2 are way faster! (lr)
•
52 items
•
Updated
This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the GaetanMichelet/chat-60_ft_task-1 and the GaetanMichelet/chat-120_ft_task-1 datasets. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.4687 | 0.9091 | 5 | 2.4589 |
2.5083 | 2.0 | 11 | 2.4440 |
2.4676 | 2.9091 | 16 | 2.4218 |
2.4562 | 4.0 | 22 | 2.3870 |
2.377 | 4.9091 | 27 | 2.3475 |
2.3303 | 6.0 | 33 | 2.2793 |
2.2553 | 6.9091 | 38 | 2.2254 |
2.174 | 8.0 | 44 | 2.1392 |
2.131 | 8.9091 | 49 | 2.0661 |
2.0142 | 10.0 | 55 | 1.9626 |
1.8873 | 10.9091 | 60 | 1.8746 |
1.7633 | 12.0 | 66 | 1.7650 |
1.726 | 12.9091 | 71 | 1.6563 |
1.5711 | 14.0 | 77 | 1.5123 |
1.4344 | 14.9091 | 82 | 1.3950 |
1.3201 | 16.0 | 88 | 1.2661 |
1.1787 | 16.9091 | 93 | 1.1831 |
1.1444 | 18.0 | 99 | 1.1188 |
1.0591 | 18.9091 | 104 | 1.0836 |
1.0151 | 20.0 | 110 | 1.0540 |
1.0277 | 20.9091 | 115 | 1.0388 |
1.0025 | 22.0 | 121 | 1.0250 |
1.0161 | 22.9091 | 126 | 1.0154 |
0.9946 | 24.0 | 132 | 1.0047 |
0.9773 | 24.9091 | 137 | 0.9970 |
0.9708 | 26.0 | 143 | 0.9890 |
0.9374 | 26.9091 | 148 | 0.9822 |
0.9403 | 28.0 | 154 | 0.9751 |
0.94 | 28.9091 | 159 | 0.9703 |
0.902 | 30.0 | 165 | 0.9633 |
0.9215 | 30.9091 | 170 | 0.9604 |
0.8854 | 32.0 | 176 | 0.9548 |
0.96 | 32.9091 | 181 | 0.9503 |
0.9162 | 34.0 | 187 | 0.9453 |
0.8686 | 34.9091 | 192 | 0.9429 |
0.906 | 36.0 | 198 | 0.9385 |
0.8762 | 36.9091 | 203 | 0.9354 |
0.8929 | 38.0 | 209 | 0.9332 |
0.8687 | 38.9091 | 214 | 0.9301 |
0.8933 | 40.0 | 220 | 0.9279 |
0.858 | 40.9091 | 225 | 0.9241 |
0.8481 | 42.0 | 231 | 0.9223 |
0.8228 | 42.9091 | 236 | 0.9217 |
0.8593 | 44.0 | 242 | 0.9186 |
0.8238 | 44.9091 | 247 | 0.9156 |
0.8081 | 46.0 | 253 | 0.9161 |
0.8327 | 46.9091 | 258 | 0.9129 |
0.8029 | 48.0 | 264 | 0.9110 |
0.7909 | 48.9091 | 269 | 0.9094 |
0.7826 | 50.0 | 275 | 0.9079 |
0.773 | 50.9091 | 280 | 0.9122 |
0.7377 | 52.0 | 286 | 0.9078 |
0.7491 | 52.9091 | 291 | 0.9050 |
0.7414 | 54.0 | 297 | 0.9093 |
0.7275 | 54.9091 | 302 | 0.9053 |
0.7198 | 56.0 | 308 | 0.9046 |
0.7203 | 56.9091 | 313 | 0.9093 |
0.6903 | 58.0 | 319 | 0.9042 |
0.6987 | 58.9091 | 324 | 0.9107 |
0.7141 | 60.0 | 330 | 0.9079 |
0.7023 | 60.9091 | 335 | 0.9120 |
0.6945 | 62.0 | 341 | 0.9087 |
0.6897 | 62.9091 | 346 | 0.9130 |
0.6597 | 64.0 | 352 | 0.9134 |
0.6954 | 64.9091 | 357 | 0.9120 |
Base model
meta-llama/Llama-3.1-8B