Edit model card

RT-DETR Russian car plate detection with classification by type

This model is a fine-tuned version of PekingU/rtdetr_r50vd_coco_o365 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 4.1673
  • Map: 0.8829
  • Map 50: 0.9858
  • Map 75: 0.9736
  • Map Car-plates-and-these-types: -1.0
  • Map Large: 0.9689
  • Map Medium: 0.9125
  • Map N P: 0.857
  • Map P P: 0.9087
  • Map Small: 0.696
  • Mar 1: 0.8686
  • Mar 10: 0.9299
  • Mar 100: 0.9357
  • Mar 100 Car-plates-and-these-types: -1.0
  • Mar 100 N P: 0.9169
  • Mar 100 P P: 0.9545
  • Mar Large: 0.9844
  • Mar Medium: 0.958
  • Mar Small: 0.8354

Model description

Модель детекции номерных знаков автомобилей РФ, в данный момент 2 класса n_p и p_p, обычные номера и полицейские

Intended uses & limitations

Пример использования:

from transformers import AutoModelForObjectDetection, AutoImageProcessor
import torch
import supervision as sv


DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AutoModelForObjectDetection.from_pretrained('Garon16/rtdetr_r50vd_russia_plate_detector').to(DEVICE)
processor = AutoImageProcessor.from_pretrained('Garon16/rtdetr_r50vd_russia_plate_detector')

path = 'path/to/image'
image = Image.open(path)
inputs = processor(image, return_tensors="pt").to(DEVICE)
with torch.no_grad():
    outputs = model(**inputs)
w, h = image.size
results = processor.post_process_object_detection(
    outputs, target_sizes=[(h, w)], threshold=0.3)
detections = sv.Detections.from_transformers(results[0]).with_nms(0.3)
labels = [
    model.config.id2label[class_id]
    for class_id
    in detections.class_id
]

annotated_image = image.copy()
annotated_image = sv.BoundingBoxAnnotator().annotate(annotated_image, detections)
annotated_image = sv.LabelAnnotator().annotate(annotated_image, detections, labels=labels)
  
grid = sv.create_tiles(
  [annotated_image],
  grid_size=(1, 1),
  single_tile_size=(512, 512),
  tile_padding_color=sv.Color.WHITE,
  tile_margin_color=sv.Color.WHITE
)
sv.plot_image(grid, size=(10, 10))

Training and evaluation data

Обучал на своём датасете - https://universe.roboflow.com/testcarplate/russian-license-plates-classification-by-this-type

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Car-plates-and-these-types Map Large Map Medium Map N P Map P P Map Small Mar 1 Mar 10 Mar 100 Mar 100 Car-plates-and-these-types Mar 100 N P Mar 100 P P Mar Large Mar Medium Mar Small
No log 1.0 109 64.6127 0.035 0.0558 0.0379 -1.0 0.0039 0.0663 0.0191 0.0508 0.0071 0.1523 0.3009 0.3361 -1.0 0.3179 0.3543 0.7625 0.3788 0.1157
No log 2.0 218 15.4008 0.8237 0.9418 0.9327 -1.0 0.893 0.879 0.7945 0.8529 0.4319 0.8203 0.8924 0.9018 -1.0 0.8766 0.9269 0.9656 0.9324 0.7653
No log 3.0 327 9.4050 0.8439 0.9566 0.9479 -1.0 0.9439 0.8908 0.8158 0.872 0.5171 0.8416 0.908 0.9144 -1.0 0.9002 0.9286 0.9781 0.9368 0.8051
No log 4.0 436 7.9164 0.8493 0.9665 0.9543 -1.0 0.9567 0.8903 0.8338 0.8648 0.5581 0.8481 0.9159 0.9267 -1.0 0.9173 0.936 0.975 0.949 0.8185
70.2867 5.0 545 6.8177 0.8525 0.9723 0.9602 -1.0 0.9521 0.8918 0.8234 0.8816 0.6025 0.8438 0.9214 0.9279 -1.0 0.9181 0.9378 0.975 0.9492 0.8211
70.2867 6.0 654 6.0182 0.854 0.9744 0.9619 -1.0 0.9574 0.8912 0.8251 0.8829 0.6123 0.8438 0.9176 0.927 -1.0 0.9137 0.9403 0.9781 0.9503 0.8163
70.2867 7.0 763 5.4024 0.8731 0.9772 0.9667 -1.0 0.9635 0.9113 0.8462 0.9001 0.6376 0.8608 0.9275 0.9336 -1.0 0.9202 0.9471 0.9781 0.956 0.8266
70.2867 8.0 872 5.2224 0.8726 0.9809 0.9767 -1.0 0.9582 0.9069 0.8487 0.8966 0.6472 0.8625 0.9265 0.9301 -1.0 0.9137 0.9464 0.9875 0.9528 0.8232
70.2867 9.0 981 4.7844 0.8679 0.9821 0.9687 -1.0 0.9574 0.9023 0.8451 0.8907 0.6382 0.8606 0.9213 0.9283 -1.0 0.9119 0.9448 0.9844 0.952 0.8165
4.2466 10.0 1090 5.1437 0.8729 0.9816 0.9762 -1.0 0.9577 0.9028 0.8448 0.901 0.6686 0.8605 0.9296 0.9359 -1.0 0.9203 0.9514 0.9781 0.9567 0.8413
4.2466 11.0 1199 4.5169 0.8858 0.9828 0.9768 -1.0 0.9707 0.9162 0.8628 0.9087 0.6734 0.8695 0.9264 0.931 -1.0 0.9121 0.95 0.9781 0.9538 0.823
4.2466 12.0 1308 4.5858 0.8813 0.9865 0.9744 -1.0 0.9623 0.9126 0.8585 0.9041 0.6815 0.8671 0.9308 0.9355 -1.0 0.9185 0.9526 0.9812 0.9583 0.8308
4.2466 13.0 1417 4.5345 0.8778 0.9843 0.9726 -1.0 0.957 0.9101 0.8526 0.903 0.6754 0.8628 0.9281 0.9335 -1.0 0.9158 0.9512 0.9812 0.9557 0.8314
3.589 14.0 1526 4.3003 0.8885 0.9857 0.9759 -1.0 0.9656 0.9189 0.8642 0.9128 0.6957 0.8724 0.9334 0.9375 -1.0 0.9194 0.9555 0.9875 0.959 0.8375
3.589 15.0 1635 4.3999 0.8819 0.986 0.9741 -1.0 0.9606 0.9118 0.8575 0.9064 0.6892 0.8659 0.9283 0.9336 -1.0 0.9137 0.9534 0.9844 0.9566 0.8245
3.589 16.0 1744 4.2719 0.8796 0.986 0.9726 -1.0 0.9661 0.9093 0.8543 0.905 0.6914 0.8649 0.927 0.9313 -1.0 0.9121 0.9505 0.9875 0.9543 0.8266
3.589 17.0 1853 4.2497 0.8838 0.9845 0.9733 -1.0 0.9656 0.9141 0.8599 0.9077 0.6997 0.8678 0.9295 0.9352 -1.0 0.9141 0.9562 0.9812 0.958 0.832
3.589 18.0 1962 4.2807 0.8829 0.9855 0.9754 -1.0 0.9673 0.9121 0.8558 0.9099 0.6964 0.8683 0.9286 0.9337 -1.0 0.9126 0.9548 0.9844 0.9555 0.8357
3.2442 19.0 2071 4.1978 0.8835 0.9861 0.9748 -1.0 0.9675 0.9121 0.8559 0.911 0.6932 0.8691 0.9272 0.9336 -1.0 0.9134 0.9538 0.9844 0.9557 0.8337
3.2442 20.0 2180 4.1673 0.8829 0.9858 0.9736 -1.0 0.9689 0.9125 0.857 0.9087 0.696 0.8686 0.9299 0.9357 -1.0 0.9169 0.9545 0.9844 0.958 0.8354

Framework versions

  • Transformers 4.46.0.dev0
  • Pytorch 2.5.0+cu124
  • Tokenizers 0.20.1
Downloads last month
288
Safetensors
Model size
42.9M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Garon16/rtdetr_r50vd_russia_plate_detector

Finetuned
(11)
this model