metadata
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
datasets:
- cnn_dailymail
metrics:
- rouge
model-index:
- name: cnn_news_summary_model_trained_on_reduced_data
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: cnn_dailymail
type: cnn_dailymail
config: 3.0.0
split: train[:3%]
args: 3.0.0
metrics:
- name: Rouge1
type: rouge
value: 0.2182
cnn_news_summary_model_trained_on_reduced_data
This model is a fine-tuned version of t5-small on the cnn_dailymail dataset. It achieves the following results on the evaluation set:
- Loss: 1.6040
- Rouge1: 0.2182
- Rouge2: 0.0943
- Rougel: 0.1841
- Rougelsum: 0.184
- Generated Length: 19.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Generated Length |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 431 | 1.6222 | 0.218 | 0.0936 | 0.1828 | 0.1829 | 19.0 |
1.9218 | 2.0 | 862 | 1.6069 | 0.2176 | 0.0939 | 0.1837 | 0.1836 | 19.0 |
1.8271 | 3.0 | 1293 | 1.6040 | 0.2182 | 0.0943 | 0.1841 | 0.184 | 19.0 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1