metadata
language:
- multilingual
- en
- fr
- es
- de
- zh
- ar
- ru
- vi
- el
- bg
- th
- tr
- hi
- ur
- sw
datasets: wikipedia
license: apache-2.0
widget:
- text: Google generated 46 billion [MASK] in revenue.
- text: Paris is the capital of [MASK].
- text: Algiers is the largest city in [MASK].
- text: Paris est la [MASK] de la France.
- text: Paris est la capitale de la [MASK].
- text: L'élection américaine a eu [MASK] en novembre 2020.
- text: تقع سويسرا في [MASK] أوروبا
- text: إسمي محمد وأسكن في [MASK].
bert-base-15lang-cased
We are sharing smaller versions of bert-base-multilingual-cased that handle a custom number of languages.
Unlike distilbert-base-multilingual-cased, our versions give exactly the same representations produced by the original model which preserves the original accuracy.
The measurements below have been computed on a Google Cloud n1-standard-1 machine (1 vCPU, 3.75 GB):
Model | Num parameters | Size | Memory | Loading time |
---|---|---|---|---|
bert-base-multilingual-cased | 178 million | 714 MB | 1400 MB | 4.2 sec |
Geotrend/bert-base-15lang-cased | 141 million | 564 MB | 1098 MB | 3.1 sec |
Handled languages: en, fr, es, de, zh, ar, ru, vi, el, bg, th, tr, hi, ur and sw.
For more information please visit our paper: Load What You Need: Smaller Versions of Multilingual BERT.
How to use
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-15lang-cased")
model = AutoModel.from_pretrained("Geotrend/bert-base-15lang-cased")
To generate other smaller versions of multilingual transformers please visit our Github repo.
How to cite
@inproceedings{smallermbert,
title={Load What You Need: Smaller Versions of Multilingual BERT},
author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire},
booktitle={SustaiNLP / EMNLP},
year={2020}
}
Contact
Please contact amine@geotrend.fr for any question, feedback or request.