llama381binstruct_summarize_short
This model is a fine-tuned version of NousResearch/Meta-Llama-3.1-8B-Instruct on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 2.4596
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 30
- training_steps: 400
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.7476 | 1.3158 | 25 | 1.4853 |
0.7367 | 2.6316 | 50 | 1.5640 |
0.3774 | 3.9474 | 75 | 1.7475 |
0.1429 | 5.2632 | 100 | 1.9993 |
0.086 | 6.5789 | 125 | 2.0531 |
0.0375 | 7.8947 | 150 | 2.1944 |
0.0224 | 9.2105 | 175 | 2.3234 |
0.0096 | 10.5263 | 200 | 2.1743 |
0.0053 | 11.8421 | 225 | 2.2676 |
0.0035 | 13.1579 | 250 | 2.4019 |
0.005 | 14.4737 | 275 | 2.4052 |
0.003 | 15.7895 | 300 | 2.4257 |
0.0025 | 17.1053 | 325 | 2.4432 |
0.0025 | 18.4211 | 350 | 2.4528 |
0.0022 | 19.7368 | 375 | 2.4576 |
0.0022 | 21.0526 | 400 | 2.4596 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for Gerardofer/llama381binstruct_summarize_short
Base model
NousResearch/Meta-Llama-3.1-8B-Instruct