Restore missing RGB channels

Restore a missing channel of a RGB image by using ControlNet to guide image generation of Stable Diffusion to infer missing channel from the other two channels.

Training

accelerate launch train_controlnet.py \
  --pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5" \
  --train_batch_size=4 \
  --gradient_accumulation_steps=8 \
  --proportion_empty_prompts=0.5
  --mixed_precision="fp16" \
  --learning_rate=1e-5 \
  --enable_xformers_memory_efficient_attention \
  --use_8bit_adam \
  --set_grads_to_none \
  --seed=0 \
  --num_train_epochs=2

Image dataset

  • laion2B-en aesthetics>=6.5 dataset
  • --min_image_size 512 --max_aspect_ratio 2 --resize_mode="center_crop" --image_size 512
  • Cleaned with fastdup default settings
  • Data augmented with right-left flipped images
  • Resulting in 214244 images
  • Set whole channel to 0 by alternating between R-G-B channels
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.