Ghunghru's picture
End of training
1bd2bed verified
metadata
license: mit
base_model: dbmdz/bert-base-german-uncased
tags:
  - generated_from_trainer
metrics:
  - f1
model-index:
  - name: bert-base-german-uncased
    results: []

bert-base-german-uncased

This model is a fine-tuned version of dbmdz/bert-base-german-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5523
  • F1: 0.4333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss F1
0.6943 1.0 189 0.6839 0.08
0.6718 2.0 378 0.6603 0.0339
0.66 3.0 567 0.6508 0.0476
0.6568 4.0 756 0.6457 0.05
0.6638 5.0 945 0.6439 0.0513
0.6552 6.0 1134 0.6387 0.0556
0.6709 7.0 1323 0.6386 0.0556
0.6541 8.0 1512 0.6369 0.0556
0.6644 9.0 1701 0.6434 0.0
0.6601 10.0 1890 0.6432 0.0
0.6558 11.0 2079 0.6421 0.0
0.6548 12.0 2268 0.6398 0.0
0.6593 13.0 2457 0.6401 0.0
0.6502 14.0 2646 0.6366 0.0
0.6457 15.0 2835 0.6292 0.0541
0.6478 16.0 3024 0.6267 0.0541
0.6378 17.0 3213 0.6311 0.0
0.6325 18.0 3402 0.6279 0.0
0.6467 19.0 3591 0.6253 0.0
0.6338 20.0 3780 0.6227 0.0
0.6281 21.0 3969 0.6194 0.0
0.6205 22.0 4158 0.6155 0.0
0.6288 23.0 4347 0.6113 0.0
0.6178 24.0 4536 0.6081 0.0976
0.6221 25.0 4725 0.6049 0.1778
0.612 26.0 4914 0.6011 0.25
0.6052 27.0 5103 0.5971 0.25
0.5997 28.0 5292 0.5925 0.2553
0.603 29.0 5481 0.5895 0.3265
0.5973 30.0 5670 0.5856 0.3200
0.594 31.0 5859 0.5821 0.3200
0.5825 32.0 6048 0.5786 0.3529
0.5787 33.0 6237 0.5753 0.3929
0.5848 34.0 6426 0.5724 0.3929
0.5703 35.0 6615 0.5698 0.4000
0.584 36.0 6804 0.5673 0.3929
0.5668 37.0 6993 0.5648 0.3860
0.5624 38.0 7182 0.5629 0.3860
0.5793 39.0 7371 0.5611 0.4138
0.5555 40.0 7560 0.5593 0.3860
0.5664 41.0 7749 0.5579 0.4407
0.553 42.0 7938 0.5566 0.4483
0.5597 43.0 8127 0.5555 0.4483
0.5555 44.0 8316 0.5546 0.4407
0.5589 45.0 8505 0.5538 0.4333
0.5578 46.0 8694 0.5531 0.4333
0.5499 47.0 8883 0.5528 0.4333
0.5434 48.0 9072 0.5524 0.4333
0.5607 49.0 9261 0.5523 0.4333
0.5478 50.0 9450 0.5523 0.4333

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.2
  • Datasets 2.12.0
  • Tokenizers 0.13.3