|
--- |
|
license: other |
|
license_name: research-licence |
|
license_link: https://huggingface.co/Qwen/Qwen2.5-3B-Instruct/blob/main/LICENSE |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
tags: |
|
- video |
|
- video-understanding |
|
- vision |
|
- multimodal |
|
- conversational |
|
- custom_code |
|
- instruction-tuning |
|
library_name: transformers |
|
--- |
|
|
|
# Apollo: An Exploration of Video Understanding in Large Multimodal Models |
|
|
|
Apollo is a family of Large Multimodal Models (LMMs) that push the state-of-the-art in video understanding. It supports tasks including: |
|
- Long-form video comprehension |
|
- Temporal reasoning |
|
- Complex video question-answering |
|
- Multi-turn conversations grounded in video content |
|
|
|
Apollo models excel at handling hour-long videos, balancing speed and accuracy through strategic design decisions. Our models outperform most 7B competitors at just 3B parameters and even rival 30B-scale models. |
|
|
|
**Key Highlights:** |
|
- **Scaling Consistency**: Design decisions validated on smaller models and datasets effectively transfer to larger scales, reducing computation and experimentation costs. |
|
- **Efficient Video Sampling**: fps sampling and advanced token resampling strategies (e.g., Perceiver) yield stronger temporal perception. |
|
- **Encoder Synergies**: Combining SigLIP-SO400M (image) with InternVideo2 (video) delivers a robust representation, outperforming single encoders on temporal tasks. |
|
- **ApolloBench**: A streamlined evaluation benchmark (41x faster) that focuses on true video understanding capabilities. |
|
|
|
## Quick Start |
|
|
|
**Installation:** |
|
```bash |
|
pip install -e . |
|
pip install flash-attn --no-build-isolation |
|
``` |
|
|
|
**Inference Example:** |
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM |
|
from apollo.mm_utils import ( |
|
KeywordsStoppingCriteria, |
|
tokenizer_mm_token, |
|
ApolloMMLoader |
|
) |
|
from apollo.conversation import conv_templates, SeparatorStyle |
|
from huggingface_hub import snapshot_download |
|
|
|
model_url = "Apollo-LMMs/Apollo-3B-t32" |
|
model_path = snapshot_download(model_url, repo_type="model") |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
trust_remote_code=True, |
|
low_cpu_mem_usage=True |
|
).to(device=device, dtype=torch.bfloat16) |
|
|
|
tokenizer = model.tokenizer |
|
vision_processors = model.vision_tower.vision_processor |
|
config = model.config |
|
num_repeat_token = config.mm_connector_cfg['num_output_tokens'] |
|
mm_processor = ApolloMMLoader( |
|
vision_processors, |
|
config.clip_duration, |
|
frames_per_clip=4, |
|
clip_sampling_ratio=0.65, |
|
model_max_length=config.model_max_length, |
|
device=device, |
|
num_repeat_token=num_repeat_token |
|
) |
|
|
|
video_path = "path/to/video.mp4" |
|
question = "Describe this video in detail" |
|
mm_data, replace_string = mm_processor.load_video(video_path) |
|
|
|
conv = conv_templates["qwen_2"].copy() |
|
conv.append_message(conv.roles[0], replace_string + "\n\n" + question) |
|
conv.append_message(conv.roles[1], None) |
|
|
|
prompt = conv.get_prompt() |
|
input_ids = tokenizer_mm_token(prompt, tokenizer, return_tensors="pt").unsqueeze(0).to(device) |
|
|
|
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 |
|
stopping_criteria = KeywordsStoppingCriteria([stop_str], tokenizer, input_ids) |
|
|
|
with torch.inference_mode(): |
|
output_ids = model.generate( |
|
input_ids, |
|
vision_input=[mm_data], |
|
data_types=['video'], |
|
do_sample=True, |
|
temperature=0.4, |
|
max_new_tokens=256, |
|
top_p=0.7, |
|
use_cache=True, |
|
num_beams=1, |
|
stopping_criteria=[stopping_criteria] |
|
) |
|
|
|
pred = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() |
|
print(pred) |
|
``` |
|
|
|
## Citation |
|
|
|
If you find this project useful, please consider citing: |
|
```BibTeX |
|
@article{zohar2024apollo, |
|
title={Apollo: An Exploration of Video Understanding in Large Multimodal Models}, |
|
author={Zohar, Orr and Wang, Xiaohan and Dubois, Yann and Mehta, Nikhil and Xiao, Tong and Hansen-Estruch, Philippe and Yu, Licheng and Wang, Xiaofang and Juefei-Xu, Felix and Zhang, Ning and Yeung-Levy, Serena and Xia, Xide}, |
|
journal={arXiv preprint arXiv:2412.10360}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
For more details, visit the [project website](https://apollo-lmms.github.io) or check out the [paper](https://arxiv.org/abs/2412.10360). |