ECBERT-base-mlm

This model is a pretrained version of answerdotai/ModernBERT-base on 25,581 texts (available here) using MLM but not yet fine-tuned on the monetary policy sentiment analysis task. The best model achieves the following results on an out-of-sample test set (Graimond/ECBERT-idioms-dataset):

  • Accuracy: 40.00%

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-5
  • weight_decay=0.01
  • per_device_train_batch_size=16
  • seed: 42
  • epochs: 20

Training results

Epoch Training Loss Validation Loss
1 1.905000 1.903329
2 1.689700 1.764568
3 1.600900 nan
4 1.476500 1.683352
5 1.381200 1.629597
6 1.367300 nan
7 1.230300 1.628195
8 1.142700 1.567721
9 1.131800 1.618517
10 1.139700 nan
11 1.086200 nan
12 1.072500 1.560426
13 0.984800 1.556072
14 0.958500 1.606674
15 0.955600 1.619744
16 0.920500 1.581421
17 0.882300 1.535872
18 0.877900 1.565936
19 0.803100 nan
20 0.815700 1.604986

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
20
Safetensors
Model size
150M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for Graimond/ECBERT-base-mlm

Finetuned
(208)
this model
Finetunes
1 model