DeBERTa-v3-small-finance_news-project
This model is a fine-tuned version of mrm8488/deberta-v3-ft-financial-news-sentiment-analysis on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2807
- Accuracy: 0.8596
- Precision: 0.8725
- Recall: 0.8596
- F1: 0.8642
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.392 | 1.0 | 74 | 0.2564 | 0.8682 | 0.8857 | 0.8682 | 0.8733 |
0.2423 | 2.0 | 148 | 0.2355 | 0.8716 | 0.8816 | 0.8716 | 0.8751 |
0.2065 | 3.0 | 222 | 0.2689 | 0.8836 | 0.8765 | 0.8836 | 0.8789 |
0.1915 | 4.0 | 296 | 0.2717 | 0.8596 | 0.8929 | 0.8596 | 0.8687 |
0.1753 | 5.0 | 370 | 0.2807 | 0.8596 | 0.8725 | 0.8596 | 0.8642 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Tokenizers 0.15.2
- Downloads last month
- 105
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Gregorig/deberta-v3-ft-financial-news-sentiment-analysis-finetuned
Base model
microsoft/deberta-v3-small