|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: google-bert/bert-large-cased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: bert-large-cased-finetuned-ner-geocorpus |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-large-cased-finetuned-ner-geocorpus |
|
|
|
This model is a fine-tuned version of [google-bert/bert-large-cased](https://huggingface.co/google-bert/bert-large-cased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1330 |
|
- Precision: 0.868 |
|
- Recall: 0.8872 |
|
- F1: 0.8775 |
|
- Accuracy: 0.9793 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 16 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 0.9991 | 275 | 0.1429 | 0.7212 | 0.7318 | 0.7265 | 0.9613 | |
|
| 0.21 | 1.9982 | 550 | 0.1111 | 0.7211 | 0.8267 | 0.7703 | 0.9654 | |
|
| 0.21 | 2.9973 | 825 | 0.0979 | 0.8168 | 0.8168 | 0.8168 | 0.9725 | |
|
| 0.0651 | 4.0 | 1101 | 0.1088 | 0.7574 | 0.9011 | 0.8230 | 0.9678 | |
|
| 0.0651 | 4.9991 | 1376 | 0.1033 | 0.825 | 0.8904 | 0.8565 | 0.9744 | |
|
| 0.0305 | 5.9982 | 1651 | 0.1132 | 0.8908 | 0.8536 | 0.8718 | 0.9785 | |
|
| 0.0305 | 6.9973 | 1926 | 0.1127 | 0.8591 | 0.8823 | 0.8705 | 0.9786 | |
|
| 0.0153 | 8.0 | 2202 | 0.1155 | 0.8687 | 0.8814 | 0.8750 | 0.9795 | |
|
| 0.0153 | 8.9991 | 2477 | 0.1280 | 0.8860 | 0.8774 | 0.8817 | 0.9804 | |
|
| 0.0089 | 9.9909 | 2750 | 0.1330 | 0.868 | 0.8872 | 0.8775 | 0.9793 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.2 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|