GuiTap's picture
End of training
44c6085 verified
metadata
license: apache-2.0
base_model: google-bert/bert-large-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-large-uncased-finetuned-ner-geocorpus
    results: []

bert-large-uncased-finetuned-ner-geocorpus

This model is a fine-tuned version of google-bert/bert-large-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1293
  • Precision: 0.8171
  • Recall: 0.8806
  • F1: 0.8476
  • Accuracy: 0.9721

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.9955 137 0.2292 0.4527 0.3450 0.3916 0.9378
No log 1.9982 275 0.1339 0.6814 0.7175 0.6990 0.9606
No log 2.9936 412 0.1147 0.7385 0.8057 0.7706 0.9647
0.2052 3.9964 550 0.1217 0.7099 0.8607 0.7781 0.9611
0.2052 4.9991 688 0.1076 0.7705 0.8531 0.8097 0.9674
0.2052 5.9946 825 0.1130 0.7970 0.8483 0.8219 0.9701
0.2052 6.9973 963 0.1332 0.7357 0.8758 0.7997 0.9637
0.0384 8.0 1101 0.1241 0.7798 0.8929 0.8325 0.9690
0.0384 8.9955 1238 0.1241 0.8303 0.8720 0.8507 0.9728
0.0384 9.9546 1370 0.1293 0.8171 0.8806 0.8476 0.9721

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.1.2
  • Datasets 2.19.1
  • Tokenizers 0.19.1