bert-large-uncased-finetuned-ner-harem

This model is a fine-tuned version of google-bert/bert-large-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3109
  • Precision: 0.6895
  • Recall: 0.6442
  • F1: 0.6661
  • Accuracy: 0.9512

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.9978 281 0.2896 0.5442 0.4772 0.5085 0.9238
0.3496 1.9973 562 0.2340 0.6811 0.5295 0.5958 0.9412
0.3496 2.9969 843 0.2240 0.5876 0.5599 0.5734 0.9409
0.1372 3.9964 1124 0.2540 0.6910 0.6223 0.6548 0.9403
0.1372 4.9960 1405 0.2598 0.6433 0.6358 0.6395 0.9439
0.0648 5.9956 1686 0.2377 0.6945 0.6442 0.6684 0.9497
0.0648 6.9951 1967 0.2822 0.6965 0.6425 0.6684 0.9501
0.0316 7.9982 2249 0.2958 0.7044 0.6509 0.6766 0.9518
0.0148 8.9978 2530 0.3006 0.6944 0.6476 0.6702 0.9496
0.0148 9.9938 2810 0.3109 0.6895 0.6442 0.6661 0.9512

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
16
Safetensors
Model size
334M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for GuiTap/bert-large-uncased-finetuned-ner-harem

Finetuned
(111)
this model