|
--- |
|
license: apache-2.0 |
|
base_model: distilbert/distilbert-base-multilingual-cased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- lener_br |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: distilbert-base-multilingual-cased-finetuned-ner-lenerBr |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: lener_br |
|
type: lener_br |
|
config: lener_br |
|
split: validation |
|
args: lener_br |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.7959714100064977 |
|
- name: Recall |
|
type: recall |
|
value: 0.7847533632286996 |
|
- name: F1 |
|
type: f1 |
|
value: 0.7903225806451614 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.959060823521215 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbert-base-multilingual-cased-finetuned-ner-lenerBr |
|
|
|
This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on the lener_br dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1904 |
|
- Precision: 0.7960 |
|
- Recall: 0.7848 |
|
- F1: 0.7903 |
|
- Accuracy: 0.9591 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 490 | 0.2124 | 0.6794 | 0.6842 | 0.6818 | 0.9363 | |
|
| 0.2601 | 2.0 | 980 | 0.1744 | 0.701 | 0.7485 | 0.7239 | 0.9486 | |
|
| 0.0688 | 3.0 | 1470 | 0.1653 | 0.7344 | 0.7598 | 0.7469 | 0.9522 | |
|
| 0.0375 | 4.0 | 1960 | 0.1868 | 0.7764 | 0.7429 | 0.7593 | 0.9546 | |
|
| 0.0229 | 5.0 | 2450 | 0.1844 | 0.7748 | 0.7854 | 0.7801 | 0.9560 | |
|
| 0.0162 | 6.0 | 2940 | 0.2072 | 0.6896 | 0.7929 | 0.7377 | 0.9462 | |
|
| 0.0123 | 7.0 | 3430 | 0.1941 | 0.7612 | 0.7704 | 0.7658 | 0.9548 | |
|
| 0.0078 | 8.0 | 3920 | 0.1900 | 0.7701 | 0.7909 | 0.7804 | 0.9581 | |
|
| 0.0068 | 9.0 | 4410 | 0.1884 | 0.8000 | 0.7822 | 0.7910 | 0.9593 | |
|
| 0.0045 | 10.0 | 4900 | 0.1904 | 0.7960 | 0.7848 | 0.7903 | 0.9591 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.1 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|