File size: 2,968 Bytes
490af9c a7efc1e 490af9c a7efc1e 490af9c a7efc1e 490af9c a7efc1e 490af9c a7efc1e 490af9c a7efc1e 490af9c a7efc1e 490af9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
---
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- lener_br
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-ner-lenerBr
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: lener_br
type: lener_br
config: lener_br
split: validation
args: lener_br
metrics:
- name: Precision
type: precision
value: 0.7845931433292028
- name: Recall
type: recall
value: 0.7810444078947368
- name: F1
type: f1
value: 0.7828147537605605
- name: Accuracy
type: accuracy
value: 0.9671762427683093
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-ner-lenerBr
This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the lener_br dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1555
- Precision: 0.7846
- Recall: 0.7810
- F1: 0.7828
- Accuracy: 0.9672
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 490 | 0.1861 | 0.6380 | 0.6661 | 0.6518 | 0.9446 |
| 0.2629 | 2.0 | 980 | 0.1618 | 0.7063 | 0.7303 | 0.7181 | 0.9537 |
| 0.0756 | 3.0 | 1470 | 0.1299 | 0.7299 | 0.8010 | 0.7638 | 0.9645 |
| 0.0443 | 4.0 | 1960 | 0.1422 | 0.7634 | 0.7708 | 0.7671 | 0.9643 |
| 0.0279 | 5.0 | 2450 | 0.1508 | 0.7870 | 0.7679 | 0.7773 | 0.9648 |
| 0.0203 | 6.0 | 2940 | 0.1457 | 0.7693 | 0.7815 | 0.7753 | 0.9681 |
| 0.0143 | 7.0 | 3430 | 0.1508 | 0.7767 | 0.7714 | 0.7740 | 0.9663 |
| 0.0105 | 8.0 | 3920 | 0.1537 | 0.7812 | 0.7669 | 0.7739 | 0.9671 |
| 0.0085 | 9.0 | 4410 | 0.1564 | 0.7809 | 0.7681 | 0.7745 | 0.9669 |
| 0.0064 | 10.0 | 4900 | 0.1555 | 0.7846 | 0.7810 | 0.7828 | 0.9672 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.1.2
- Datasets 2.19.1
- Tokenizers 0.19.1
|