GuiTap's picture
End of training
cc6d56c verified
|
raw
history blame
2.42 kB
metadata
license: apache-2.0
base_model: distilbert/distilroberta-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: distilroberta-base-finetuned-ner-harem
    results: []

distilroberta-base-finetuned-ner-harem

This model is a fine-tuned version of distilbert/distilroberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2053
  • Precision: 0.6638
  • Recall: 0.6836
  • F1: 0.6735
  • Accuracy: 0.9498

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 282 0.2811 0.4809 0.4896 0.4852 0.9235
0.3394 2.0 564 0.2218 0.5679 0.5866 0.5771 0.9377
0.3394 3.0 846 0.2205 0.5708 0.5776 0.5742 0.9347
0.1635 4.0 1128 0.2027 0.6290 0.6478 0.6382 0.9469
0.1635 5.0 1410 0.1895 0.6542 0.6806 0.6672 0.9504
0.106 6.0 1692 0.2055 0.6334 0.6448 0.6391 0.9470
0.106 7.0 1974 0.1992 0.6328 0.6687 0.6502 0.9502
0.0744 8.0 2256 0.2051 0.6804 0.6925 0.6864 0.9513
0.0522 9.0 2538 0.1998 0.6745 0.6866 0.6805 0.9502
0.0522 10.0 2820 0.2053 0.6638 0.6836 0.6735 0.9498

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.1.2
  • Datasets 2.19.1
  • Tokenizers 0.19.1