Edit model card

NERBorder

This model is a fine-tuned version of google-bert/bert-base-chinese on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5195
  • Precision: 0.9016
  • Recall: 0.8983
  • F1: 0.9000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1
0.2099 1.0 416 0.1940 0.8281 0.8152 0.8216
0.1658 2.0 832 0.1799 0.8464 0.8590 0.8527
0.1276 3.0 1248 0.1821 0.8795 0.8639 0.8716
0.1076 4.0 1664 0.1961 0.8903 0.8788 0.8845
0.0792 5.0 2080 0.2277 0.8787 0.8869 0.8828
0.054 6.0 2496 0.2395 0.9084 0.8701 0.8888
0.0433 7.0 2912 0.2991 0.8999 0.8915 0.8957
0.0288 8.0 3328 0.3374 0.8919 0.8935 0.8927
0.022 9.0 3744 0.3752 0.9054 0.8921 0.8987
0.0211 10.0 4160 0.4105 0.8952 0.8985 0.8968
0.0147 11.0 4576 0.4084 0.9013 0.9004 0.9009
0.0095 12.0 4992 0.4542 0.9047 0.8952 0.8999
0.01 13.0 5408 0.4516 0.9086 0.8896 0.8990
0.0087 14.0 5824 0.4521 0.9025 0.8935 0.8980
0.0069 15.0 6240 0.4878 0.9034 0.9022 0.9028
0.0042 16.0 6656 0.5097 0.9021 0.8997 0.9009
0.006 17.0 7072 0.5195 0.9054 0.9008 0.9031
0.0043 18.0 7488 0.5032 0.9009 0.8977 0.8993
0.0029 19.0 7904 0.5155 0.9003 0.8962 0.8983
0.0034 20.0 8320 0.5195 0.9016 0.8983 0.9000

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.0.1
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
4
Safetensors
Model size
102M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for H336104/NERBorder

Finetuned
(149)
this model

Evaluation results