HWJin/SMU-NLP-assignment2-finetuned-best

This model is a fine-tuned version of distilbert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.9936
  • Validation Loss: 0.9867
  • Epoch: 13

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 990, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'passive_serialization': True}, 'warmup_steps': 10, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: mixed_float16

Training results

Train Loss Validation Loss Epoch
1.6490 1.2199 0
1.2679 1.1622 1
1.1796 1.0931 2
1.1200 1.0274 3
1.0841 1.0739 4
1.0567 1.0317 5
1.0164 0.9895 6
0.9819 1.0365 7
0.9960 0.9857 8
1.0143 0.9954 9
1.0156 1.0173 10
0.9915 1.0391 11
1.0246 1.0288 12
0.9936 0.9867 13

Framework versions

  • Transformers 4.19.2
  • TensorFlow 2.8.2
  • Datasets 2.2.2
  • Tokenizers 0.12.1
Downloads last month
2
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.