albert-xxlarge-v1 / README.md
regisss's picture
regisss HF staff
Update README.md
aac378b
|
raw
history blame
2.39 kB
---
license: apache-2.0
---
[Optimum Habana](https://github.com/huggingface/optimum-habana) is the interface between the Hugging Face Transformers and Diffusers libraries and Habana's Gaudi processor (HPU).
It provides a set of tools enabling easy and fast model loading, training and inference on single- and multi-HPU settings for different downstream tasks.
Learn more about how to take advantage of the power of Habana HPUs to train and deploy Transformers and Diffusers models at [hf.co/hardware/habana](https://huggingface.co/hardware/habana).
## ALBERT XXLarge model HPU configuration
This model only contains the `GaudiConfig` file for running the [albert-xxlarge-v1](https://huggingface.co/albert-xxlarge-v1) model on Habana's Gaudi processors (HPU).
**This model contains no model weights, only a GaudiConfig.**
This enables to specify:
- `use_habana_mixed_precision`: whether to use Habana Mixed Precision (HMP)
- `hmp_opt_level`: optimization level for HMP, see [here](https://docs.habana.ai/en/latest/PyTorch/PyTorch_Mixed_Precision/PT_Mixed_Precision.html#configuration-options) for a detailed explanation
- `hmp_bf16_ops`: list of operators that should run in bf16
- `hmp_fp32_ops`: list of operators that should run in fp32
- `hmp_is_verbose`: verbosity
- `use_fused_adam`: whether to use Habana's custom AdamW implementation
- `use_fused_clip_norm`: whether to use Habana's fused gradient norm clipping operator
## Usage
The model is instantiated the same way as in the Transformers library.
The only difference is that there are a few new training arguments specific to HPUs.
[Here](https://github.com/huggingface/optimum-habana/blob/main/examples/question-answering/run_qa.py) is a question-answering example script to fine-tune a model on SQuAD. You can run it with ALBERT XXL with the following command:
```bash
python run_qa.py \
--model_name_or_path albert-xxlarge-v1 \
--gaudi_config_name Habana/albert-xxlarge-v1 \
--dataset_name squad \
--do_train \
--do_eval \
--per_device_train_batch_size 12 \
--per_device_eval_batch_size 2 \
--learning_rate 5e-6 \
--num_train_epochs 2 \
--max_seq_length 384 \
--output_dir /tmp/squad/ \
--use_habana \
--use_lazy_mode \
--throughput_warmup_steps 2
```
Check the [documentation](https://huggingface.co/docs/optimum/habana/index) out for more advanced usage and examples.