File size: 2,857 Bytes
3e26b52 a6ef228 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
license: apache-2.0
---
[Optimum Habana](https://github.com/huggingface/optimum-habana) is the interface between the Hugging Face Transformers and Diffusers libraries and Habana's Gaudi processor (HPU).
It provides a set of tools enabling easy and fast model loading, training and inference on single- and multi-HPU settings for different downstream tasks.
Learn more about how to take advantage of the power of Habana HPUs to train and deploy Transformers and Diffusers models at [hf.co/hardware/habana](https://huggingface.co/hardware/habana).
## Whisper model HPU configuration
This model only contains the `GaudiConfig` file for running the [Whisper](https://huggingface.co/openai/whisper-small) model on Habana's Gaudi processors (HPU).
**This model contains no model weights, only a GaudiConfig.**
This enables to specify:
- `use_fused_adam`: whether to use Habana's custom AdamW implementation
- `use_fused_clip_norm`: whether to use Habana's fused gradient norm clipping operator
- `use_torch_autocast`: whether to use Torch Autocast for managing mixed precision
## Usage
The model is instantiated the same way as in the Transformers library.
The only difference is that there are a few new training arguments specific to HPUs.\
It is strongly recommended to train this model doing bf16 mixed-precision training for optimal performance and accuracy.
[Here](https://github.com/huggingface/optimum-habana/blob/main/examples/speech-recognition/run_speech_recognition_seq2seq.py) is a sequence-to-sequence speech recognition example script to fine-tune a model. You can run it with Whisper with the following command:
```bash
python run_speech_recognition_seq2seq.py \
--model_name_or_path="openai/whisper-small" \
--dataset_name="mozilla-foundation/common_voice_11_0" \
--dataset_config_name="hi" \
--language="hindi" \
--train_split_name="train+validation" \
--eval_split_name="test" \
--gaudi_config_name="Habana/whisper" \
--max_steps="5000" \
--output_dir="/tmp/whisper-small-hi" \
--per_device_train_batch_size="48" \
--per_device_eval_batch_size="2" \
--logging_steps="25" \
--learning_rate="1e-5" \
--warmup_steps="500" \
--evaluation_strategy="steps" \
--eval_steps="1000" \
--save_strategy="steps" \
--save_steps="1000" \
--generation_max_length="225" \
--preprocessing_num_workers="1" \
--length_column_name="input_length" \
--max_duration_in_seconds="30" \
--text_column_name="sentence" \
--freeze_feature_encoder="False" \
--group_by_length \
--bf16 \
--overwrite_output_dir \
--do_train \
--do_eval \
--predict_with_generate \
--use_habana \
--use_hpu_graphs_for_inference \
--label_features_max_length 128 \
--dataloader_num_workers 8 \
--throughput_warmup_steps 3
```
Check the [documentation](https://huggingface.co/docs/optimum/habana/index) out for more advanced usage and examples.
|