metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: HamzaSidhu786/distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.83
HamzaSidhu786/distilhubert-finetuned-gtzan
This model is a fine-tuned version of facebook/wav2vec2-base on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.8269
- Accuracy: 0.83
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.1788 | 1.0 | 57 | 2.0907 | 0.39 |
1.6561 | 2.0 | 114 | 1.5747 | 0.62 |
1.3464 | 3.0 | 171 | 1.4279 | 0.57 |
1.1727 | 4.0 | 228 | 1.1862 | 0.68 |
0.9399 | 5.0 | 285 | 1.0572 | 0.66 |
0.931 | 6.0 | 342 | 1.1268 | 0.66 |
0.7375 | 7.0 | 399 | 0.8744 | 0.77 |
0.5798 | 8.0 | 456 | 0.8596 | 0.78 |
0.5668 | 9.0 | 513 | 0.8253 | 0.76 |
0.4972 | 10.0 | 570 | 0.8273 | 0.76 |
0.2375 | 11.0 | 627 | 0.8192 | 0.76 |
0.1913 | 12.0 | 684 | 0.7618 | 0.83 |
0.2132 | 13.0 | 741 | 0.8249 | 0.82 |
0.0823 | 14.0 | 798 | 0.8962 | 0.81 |
0.0444 | 15.0 | 855 | 0.9376 | 0.78 |
0.0375 | 16.0 | 912 | 0.8609 | 0.81 |
0.0298 | 17.0 | 969 | 0.8741 | 0.83 |
0.0808 | 18.0 | 1026 | 0.8911 | 0.84 |
0.0453 | 19.0 | 1083 | 0.8756 | 0.84 |
0.0229 | 20.0 | 1140 | 0.8269 | 0.83 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1