HareemFatima's picture
End of training
404d59d verified
|
raw
history blame
2.34 kB
metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - HareemFatima/stutteringdetection
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-stutteringdetection
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: stuttering
          type: HareemFatima/stutteringdetection
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9024390243902439

distilhubert-finetuned-stutteringdetection

This model is a fine-tuned version of ntu-spml/distilhubert on the stuttering dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5717
  • Accuracy: 0.9024

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8357 1.0 92 0.7812 0.8659
0.2951 2.0 184 0.3680 0.8902
0.097 3.0 276 0.4000 0.8659
0.0872 4.0 368 0.3953 0.9024
0.4557 5.0 460 0.4904 0.9024
0.0368 6.0 552 0.4972 0.9024
0.0074 7.0 644 0.5408 0.9146
0.0039 8.0 736 0.5460 0.9024
0.0036 9.0 828 0.5684 0.9024
0.0035 10.0 920 0.5717 0.9024

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1