Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +19 -19
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 256.44 +/- 13.48
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7161b215a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7161b21630>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7161b216c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7161b21750>", "_build": "<function ActorCriticPolicy._build at 0x7f7161b217e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7161b21870>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7161b21900>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7161b21990>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7161b21a20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7161b21ab0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7161b21b40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7161b21bd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7161cccd00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": 32, "action_noise": null, "start_time": 1716315088735034028, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2j1zxDjrE/fzS5PHiQB72NZTo8qWKvPQAAAAAAAAAAAAMlPpVzoz/ABTM/agdRvr89vbwfVg4+AAAAAAAAAADNDC0+XCxqvLk6FTvNPDS5kQLHvSKpPboAAIA/AACAPy3FcT4ztr8/fhiYPIl4uDt2OFg/enXkPgAAAAAAAAAA2o7Kvfjuoz8AEpC+nnn9vQtxb7yN2E2+AAAAAAAAAACabYm8U4YrP9eNH7//G3C+Lj06vuZmOb8AAAAAAAAAAAAsd7ywppI/W1jZviKqhzvcD4m+SqAavwAAAAAAAAAAc96KvXrmrj9KFUE9UxLuvSr/F7+mzJO+AAAAAAAAAAAzw/e9JieqP1bwWz3GJ327H83/viOKtL4AAAAAAAAAAJp+7LwvHq8+GdEjPyCe2r7xZhK+nkY4PwAAAAAAAAAAM3ELPA1xoT9et4c+lr8IvuLgUr2tteQ+AAAAAAAAAAAAPYW9iINtP75gr74hXqA9V3vzvqx5ML8AAAAAAAAAAADUDb6faSs/iqSWvt/38b0uY0G/4gFavwAAAAAAAAAAk01RPlKAnTx+ci89jBpSvCqmZb71Mnm+AAAAAAAAAACaodQ9J6lUP4g13T3T1FA8P4gtP5GWLD8AAAAAAAAAAAB6Cz1Lk0A/A8NHPD884b5fyLk/ao6zPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGbxBfa6BiGMAWyUTRcBjAF0lEdAlAr4s/Y8MnV9lChoBkfAPWD9GZuyeWgHTQcBaAhHQJQMbLGJemh1fZQoaAZHwGAINpVS4vxoB0utaAhHQJQM4UIsyzp1fZQoaAZHQGm3ebd8ArBoB00JA2gIR0CUDtuWrwOOdX2UKGgGR8Bt+/YL9deIaAdNHgFoCEdAlA8LGecx03V9lChoBkfAQdGi1y/9HmgHTQABaAhHQJQP2j59E1F1fZQoaAZHwGnfWhRIjGFoB00VAWgIR0CUElocrAgxdX2UKGgGR8BgqNNYbKigaAdL6mgIR0CUFDqD9OyndX2UKGgGR8Bt1x5Pdl/ZaAdNYQFoCEdAlBTJ17pmmXV9lChoBkdAWKe+ZgG8mWgHTegDaAhHQJQVyzKLbYd1fZQoaAZHwGp9XOObRWtoB01sAWgIR0CUFfZsbedkdX2UKGgGR0BgKTNt65XmaAdN6ANoCEdAlBjt5UtI1HV9lChoBke/8o1dgOSW7mgHS/xoCEdAlBm6ebutwXV9lChoBkfAQOMOXmeUZGgHS9ZoCEdAlBzELtu1nnV9lChoBkfAbUPQv6CUYGgHS9ZoCEdAlB3g1FYuCnV9lChoBkdAcEZLaEi+tmgHTXoBaAhHQJQfbSSeRPp1fZQoaAZHwEGp5KvmozhoB00VAWgIR0CUH/+4b0e2dX2UKGgGR8BqewG+sYEXaAdL+mgIR0CUIaMoMKCydX2UKGgGR8A0UItlI3BIaAdL72gIR0CUI9Gm1pj+dX2UKGgGR8Bm6Mmnfl6raAdL9WgIR0CUI/cp9ZzQdX2UKGgGR8Boi65sj3VTaAdNLgFoCEdAlCX37UG3WnV9lChoBkdANh8j/uLJjmgHS8VoCEdAlCdXzcynDXV9lChoBkdAahh2cJ+lTGgHTfMBaAhHQJQp5lyzXz11fZQoaAZHQG7Gdfb9If9oB00MAmgIR0CUKtbSZ0CBdX2UKGgGR0BYMpXyRSxaaAdN6ANoCEdAlCxtc8kleHV9lChoBkfAaH4xFiKBNGgHTQ0BaAhHQJQsl1dPci51fZQoaAZHwGrZZP/JeVtoB01hAWgIR0CULN0O3DvWdX2UKGgGR8BQq2DtgKF7aAdNXwFoCEdAlC1jFdcB2nV9lChoBkdAZh8SOinHemgHTRoDaAhHQJQvyMm4RVZ1fZQoaAZHwGjk3p4bCJpoB007AWgIR0CUMIlAu7HydX2UKGgGR0Bt+3zBhx5taAdNCgJoCEdAlDJD544ZM3V9lChoBkfAaJDK3d9DyGgHTQsBaAhHQJQyevjfek51fZQoaAZHwGejQW3z+WJoB00BAWgIR0CUM64593KTdX2UKGgGR8AtDHz6JqIraAdNUQFoCEdAlDO2vfTCtXV9lChoBkfAFjKhtcfNimgHTTQBaAhHQJQ0Om0mdAh1fZQoaAZHwGk3N5MURFtoB00rAWgIR0CUNsUEgW8AdX2UKGgGR8A80N21UlzEaAdLyGgIR0CUNwjAzpHJdX2UKGgGR8Blc8QZn+Q2aAdL5mgIR0CUN/TrmhdudX2UKGgGR8AnwwB5ooNNaAdL7GgIR0CUN/4YJmdzdX2UKGgGR8Ba6kZvUBn0aAdL5mgIR0CUOr4bjtG/dX2UKGgGR0Bnmqx3V09yaAdNDQJoCEdAlDsTyauwHXV9lChoBkdAcSPykbgjyGgHTVwBaAhHQJQ7QqvvBrN1fZQoaAZHwF8VoHs1KoRoB0ulaAhHQJQ8GntOVPh1fZQoaAZHQGeUGSyMUAVoB015AWgIR0CUPUHR1HOKdX2UKGgGR8BpM3Xd0q6OaAdNGAFoCEdAlD2/USZjQXV9lChoBkdANisWweNkv2gHTQUBaAhHQJQ+e+TNdJJ1fZQoaAZHwGljCQcPvrpoB0v3aAhHQJQ/LzJ6po91fZQoaAZHQF8I00FbFCNoB03oA2gIR0CUQF9R77bddX2UKGgGR0Bqm2WrwOOKaAdNLAFoCEdAlEFoKc/dI3V9lChoBkfAZsw2CNCJGmgHS+toCEdAlEGmKZUkwHV9lChoBkfAaKsjvd/KAGgHS/BoCEdAlEKhX0XgtXV9lChoBkdAbb2RxLkCFWgHTWUBaAhHQJRCoGnn+yZ1fZQoaAZHwGojHfdhy81oB0vwaAhHQJRCqrIYFaB1fZQoaAZHQBaipzcRDkVoB00eAWgIR0CUQ0ci4axYdX2UKGgGR8A20pEhJRO2aAdL32gIR0CUREUPxx1gdX2UKGgGR8A06LTQVsUJaAdLtWgIR0CURXdlum78dX2UKGgGR8Bkqv1rZamoaAdNCwFoCEdAlEWZN9H+ZXV9lChoBkfAZs9CHARChWgHTQQBaAhHQJRG3YGt6ol1fZQoaAZHwEvYIi1RceNoB0vjaAhHQJRHA1+AmRh1fZQoaAZHwE420vXbudBoB00qAWgIR0CUSjtkWhysdX2UKGgGR0Bvp+1+iJwbaAdNWwFoCEdAlEqD3yqdYnV9lChoBkfAaUdARChN/WgHS+doCEdAlEwDHjp9qnV9lChoBkfAaJUWGh24eGgHTQcBaAhHQJROTUkOZst1fZQoaAZHwDEzKuB+WnloB0vwaAhHQJROclKK5091fZQoaAZHQAlfn4fwI+poB0v4aAhHQJRO5C8e0Xx1fZQoaAZHwEjqFMZgogFoB00dAWgIR0CUUQ29cry2dX2UKGgGR8BqGTW9US7HaAdL+mgIR0CUUa9q1w5vdX2UKGgGR0BoKXgm7aqTaAdNeQFoCEdAlFLgZflZHXV9lChoBkfAK0TxwyZa3mgHS/doCEdAlFNanJkoW3V9lChoBkfAaGf2ZiNKiGgHTTgBaAhHQJRTbuOS4e91fZQoaAZHwD+cZvUBnzxoB00DAWgIR0CUU7G0NSZSdX2UKGgGR8Bkc/mHP/rCaAdL+GgIR0CUVFTYdyT7dX2UKGgGR0AsvQFcIJJHaAdL/WgIR0CUVtFbmlqKdX2UKGgGR0BqGTPv8ZUDaAdNYQFoCEdAlFhrKq4pdHV9lChoBkfAZDHjtoi9qWgHS+ZoCEdAlFjJDZ13dXV9lChoBkfAagz6fra/RGgHTUIBaAhHQJRZ/tw71Zl1fZQoaAZHQFZsHEdeY2NoB03oA2gIR0CUWyazNUwSdX2UKGgGR8A1F6N2ki2VaAdNHgFoCEdAlFustwrDqHV9lChoBkfAZsh0163RX2gHS+toCEdAlF2C31BdEHV9lChoBkfAcJJnTAnDzmgHTXYBaAhHQJRdhLPD50t1fZQoaAZHwGbslme18b9oB00GAWgIR0CUXdloUSIydX2UKGgGR0BqUvJ7sv7FaAdNCwFoCEdAlF6Pacqe9XV9lChoBkfAJlnanJkoW2gHS/VoCEdAlF6p+2E0znV9lChoBkfAUqxlsguAZ2gHTWIBaAhHQJRgNb0OEuh1fZQoaAZHQHDUOARTS9doB02iAWgIR0CUYPJLuhK2dX2UKGgGR0BwKGRigCfZaAdNnAFoCEdAlGMcny/bkHV9lChoBkfANa/oePq9oWgHS7xoCEdAlGO1Vo6CDnV9lChoBkfAasTlEJBw/GgHTToBaAhHQJRke5PM0P91fZQoaAZHwDg+3OObRWtoB0vfaAhHQJRk4eyRjjJ1fZQoaAZHwGMnhj4HooxoB0vmaAhHQJRnm0ngHeJ1fZQoaAZHwDnsQL/jsD5oB0v2aAhHQJRoas1baAZ1fZQoaAZHQGyqlFMIu5BoB030AWgIR0CUaPYsunMudX2UKGgGR0BuExsuWa+faAdNbAFoCEdAlGpZIczZYnV9lChoBkfALHVgx8D0UWgHTQkBaAhHQJRqmy5Zr591fZQoaAZHwAvuIyj59E1oB0v9aAhHQJRr7ytmthd1fZQoaAZHwEjKcGTs6aNoB0vKaAhHQJRsyLtNSIh1fZQoaAZHQFSnK0UoKD1oB03oA2gIR0CUbPW1c+qzdX2UKGgGR0BtwgHqu8sdaAdNygFoCEdAlG0To+wC83V9lChoBkfAa9KFg2IfsGgHTV8BaAhHQJRtqKvV3EB1fZQoaAZHwEBHFUhmoR9oB0vMaAhHQJRuAbn5i3J1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVoAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooR3oScf8uX3deH5dH1Wj2dyACMA2luY5SKEU/TAjY6sHd6IwowoZt0YOMAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "n_steps": 2048, "gamma": 0.1, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7edf21b43910>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7edf21b439a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7edf21b43a30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7edf21b43ac0>", "_build": "<function ActorCriticPolicy._build at 0x7edf21b43b50>", "forward": "<function ActorCriticPolicy.forward at 0x7edf21b43be0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7edf21b43c70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7edf21b43d00>", "_predict": "<function ActorCriticPolicy._predict at 0x7edf21b43d90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7edf21b43e20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7edf21b43eb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7edf21b43f40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7edf21ce99c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": 32, "action_noise": null, "start_time": 1717091764212804998, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACY7gL321Cu6JaTjO0HlAzj/zqK5prpbNQAAgD8AAIA/mrPrvPbke7qKkva6yb4stzRriTvTCQ06AACAPwAAgD9mOcs84daquiabBzxWrZo2HeT+urgakTUAAIA/AACAP8AwkD0pcEO6K0P2vA9qrLwO+kq5/y2XvQAAAAAAAIA/ml6tPHvQirpm57U8Ewx+NbaX57qFumc0AACAPwAAgD8Axx+9uDb3uZ0JL7tPAkk2Nxg7uwUkTjoAAIA/AACAP81+/zx7nIK6Ny0DucUr7LWXLzG7aEwWOAAAgD8AAIA/psflPY+GEboNNXm55AUxtFBsEDrO0444AAAAAAAAgD/zqLu9w8V4upHFy7pC5821IRyDOxgx7jkAAIA/AACAP7NVw71/Kbg/mKCcvt7csL5vxwW+zUfvvQAAAAAAAAAAZiawuimIQLoDxkk74kN9NpMwiDvAL226AACAPwAAgD/aW8W94AeDPx1xdr4KcQa/kO9Fvo74FL4AAAAAAAAAAM0ClDxpDAS8XQLoPIGFsTza0o69Ma2SPQAAgD8AAIA/GpCCPVxzL7p1ixM8sI5JNqOJKrmOLD01AACAPwAAgD8AsGg8XPdWurr1ObtV/901F1MAuyiLVDoAAIA/AACAP2ZkQDz5PYI+E/E/PDNSrb6oWsU8lD1MPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGFnmPgeii+MAWyUTegDjAF0lEdAk7S99Dx9X3V9lChoBkdAZVZp7kXDWWgHTegDaAhHQJO6JoFmnO11fZQoaAZHQGEU7dJrcj9oB03oA2gIR0CTu+AdXDFZdX2UKGgGR0BiZtXq7iAEaAdN6ANoCEdAk8sDWPLgXXV9lChoBkdAaHzEZR8+imgHTegDaAhHQJPOVmbsniN1fZQoaAZHQGNqjBVMmF9oB03oA2gIR0CTz3alUIcBdX2UKGgGR0Bk/51eSjgyaAdN6ANoCEdAk9aF/MGHHnV9lChoBkdAYN9OxB3RomgHTegDaAhHQJPWpMFlkH51fZQoaAZHQGGB+u/1xsFoB03oA2gIR0CT4Cqd6LOzdX2UKGgGR0Bg5uIInjQzaAdN6ANoCEdAk+mx3u/lAHV9lChoBkdAV+pRwZOzp2gHTegDaAhHQJPp4Mz/IbR1fZQoaAZHQGEy+eFtbcJoB03oA2gIR0CT8QWjGkvcdX2UKGgGR0BhP4xYaHbiaAdN6ANoCEdAk/EfkFOfunV9lChoBkdAYzWMm4RVZWgHTegDaAhHQJP+/XQMQVd1fZQoaAZHQGc7IgV45cVoB03oA2gIR0CT/+aAnUlSdX2UKGgGR0Bi8qOHWSU1aAdN6ANoCEdAlAVD7uUliXV9lChoBkdAWo4AIY3vQWgHTegDaAhHQJQJvNwBHTZ1fZQoaAZHQC6Gmm+CbttoB0tpaAhHQJQN7Rw6ySp1fZQoaAZHQGITrvTgEU1oB03oA2gIR0CUED/t6X0HdX2UKGgGR0BextdVvMr3aAdN6ANoCEdAlBHi4axX4nV9lChoBkdAYc5YGMXJo2gHTegDaAhHQJQdtzV+Zw51fZQoaAZHQGFGqioKlYVoB03oA2gIR0CUIS3xWkrPdX2UKGgGR0BjKc5bQkX2aAdN6ANoCEdAlCJBo/Rmb3V9lChoBkdAYjax0MgEEGgHTegDaAhHQJQqJwOvt+l1fZQoaAZHQGJJ2uoxYaJoB03oA2gIR0CUKk+z+m3wdX2UKGgGR0Bl/Ptv4ubraAdN6ANoCEdAlDZqGcnVonV9lChoBkdAYhEizsyBTWgHTegDaAhHQJQ/kyRB/qh1fZQoaAZHQGPItaQmu1ZoB03oA2gIR0CUP8UUwi7kdX2UKGgGR0Bnu6bH6uW9aAdN6ANoCEdAlHSDGHYYi3V9lChoBkdAZTwjgydnTWgHTegDaAhHQJR0mQA+6iF1fZQoaAZHQGM5nH3lCC1oB03oA2gIR0CUfdMTewcHdX2UKGgGR0Be01Y2bXpXaAdN6ANoCEdAlH6ft+kP+XV9lChoBkdAZLcf7rLQomgHTegDaAhHQJSHX+MqBmR1fZQoaAZHQGM6SJKraM9oB03oA2gIR0CUi5mMfigkdX2UKGgGR0BoancafjCIaAdN6ANoCEdAlI2wOSW7e3V9lChoBkdAXPYM/hVENWgHTegDaAhHQJSPWA8Swnp1fZQoaAZHQGNBNQ9A5aNoB03oA2gIR0CUnumwJPZadX2UKGgGR0BiJWX9itq6aAdN6ANoCEdAlKJWeg+Ql3V9lChoBkdAXNM3eenQ6mgHTegDaAhHQJSjau9vjwR1fZQoaAZHQGFfn5zo2XNoB03oA2gIR0CUqmVy3kPudX2UKGgGR0Bi6tPtUn5SaAdN6ANoCEdAlKp6rq+rVHV9lChoBkdAYLcuNgjQiWgHTegDaAhHQJS0T+VC5Vh1fZQoaAZHQGVEfms/6ftoB03oA2gIR0CUwRVnEl3RdX2UKGgGR0Bk/I0dilSCaAdN6ANoCEdAlMFKHj6vaHV9lChoBkdAW0JcIJJGv2gHTegDaAhHQJTJMD5j6N51fZQoaAZHQGIrVGb1AZ9oB03oA2gIR0CUyUnyNGVidX2UKGgGR0BicdKmKqGUaAdN6ANoCEdAlNZfrrxAjnV9lChoBkdAYUQhUR3/xWgHTegDaAhHQJTXPhisnzB1fZQoaAZHQGUUlOoHcDdoB03oA2gIR0CU4DPFefI0dX2UKGgGR0BfT4KlYU35aAdN6ANoCEdAlOQbk4m1IHV9lChoBkdAYukAR02ca2gHTegDaAhHQJTmD6JqIrR1fZQoaAZHQGKf48lolD5oB03oA2gIR0CU54/o7muDdX2UKGgGR0AoI/7BO58SaAdLdWgIR0CU7j9JBgNPdX2UKGgGR0BilUkhRqGlaAdN6ANoCEdAlPK9SZSeiHV9lChoBkdAYLs77sOXmmgHTegDaAhHQJT2MIa99MN1fZQoaAZHQGcCzKDCgsdoB03oA2gIR0CU9zhegL7XdX2UKGgGR0BkiZa5f+juaAdN6ANoCEdAlP4fBBRht3V9lChoBkdAYNUykbgjyGgHTegDaAhHQJT+SE4//vR1fZQoaAZHQFoTmY0EX+FoB03oA2gIR0CVCuYiPhhqdX2UKGgGR0Bdt+xKQJXyaAdN6ANoCEdAlRQGMwUQCnV9lChoBkdAXxuSA6Mir2gHTegDaAhHQJUUPc1wYLt1fZQoaAZHQGYGIUBXCCVoB03oA2gIR0CVSQtkFwDOdX2UKGgGR0Bjsjhisny/aAdN6ANoCEdAlUkf6CUX53V9lChoBkdAU5fFR51Ng2gHS6doCEdAlU57tNSIg3V9lChoBkdAYkw60Y0l7mgHTegDaAhHQJVSESHuZ1F1fZQoaAZHQGjVx7RfF75oB03oA2gIR0CVUszdUKiPdX2UKGgGR0Bk0sJlar3kaAdN6ANoCEdAlVrZNfw7T3V9lChoBkdAZQEjASFoMGgHTegDaAhHQJVer8IiTt91fZQoaAZHQGdUllsguAZoB03oA2gIR0CVYiatcObzdX2UKGgGR0BgVuP1ct5EaAdN6ANoCEdAlWnstoSL63V9lChoBkdAYNMvTPSlWWgHTegDaAhHQJVv8XZXdTJ1fZQoaAZHQFs5s3AEdNpoB03oA2gIR0CVdEHpbD/EdX2UKGgGR0BfKjHKfWc0aAdN6ANoCEdAlXUv8uSOinV9lChoBkdAZH0ed07r9mgHTegDaAhHQJV7ELRa5gB1fZQoaAZHQGMuCPyTY/VoB03oA2gIR0CVeyfj0cwQdX2UKGgGR0BXpQ3o9s7/aAdLqGgIR0CVfB8baRISdX2UKGgGR0Bh9UKG+K0laAdN6ANoCEdAlYMmMbWEsnV9lChoBkdAYLqQV9F4LWgHTegDaAhHQJWKs3++/QB1fZQoaAZHQGLSAaef7JpoB03oA2gIR0CVkKYwZflZdX2UKGgGR0BkDAc/+sHTaAdN6ANoCEdAlZC5E+gUUXV9lChoBkdAZUkNVinYQWgHTegDaAhHQJWVv9aUzKt1fZQoaAZHQGPmeoDPnjhoB03oA2gIR0CVmQXfIjnndX2UKGgGR0BjFBJRO1v3aAdN6ANoCEdAlZm9SEUTMHV9lChoBkdAZmBLs8gZCWgHTegDaAhHQJWjj/Lkjop1fZQoaAZHQFICUH6dlNFoB0vCaAhHQJWlHTpgTh51fZQoaAZHQGEYC1RceKdoB03oA2gIR0CVqHT5ftx/dX2UKGgGR0Bk1TqIJqqPaAdN6ANoCEdAlawKHj6vaHV9lChoBkdAZkO4CIUJwGgHTegDaAhHQJWyWTKT0QN1fZQoaAZHQCRUSf16E8JoB0vCaAhHQJW5PCwbEP11fZQoaAZHQGHmSuhbnoxoB03oA2gIR0CVuZbRWtEHdX2UKGgGR0BpWYukDZDiaAdN6ANoCEdAlbp9n5BToHV9lChoBkdAS87rs0HhTGgHS7doCEdAlb6q8cuJ13V9lChoBkdAYZeJoCdSVGgHTegDaAhHQJXAg/JNj9Z1fZQoaAZHQGiBg0bcXWRoB03oA2gIR0CVwJYxcmjTdX2UKGgGR0BlY6BClabGaAdN6ANoCEdAlcGUXxe9jHV9lChoBkdAYqQF+NLlFWgHTegDaAhHQJXIEvysjml1fZQoaAZHQEs5Rb8m8dxoB0utaAhHQJXKqS2Yv391fZQoaAZHQGM0uIAOrhloB03oA2gIR0CVz4YUnG83dX2UKGgGR0BnKXWJ79hraAdN6ANoCEdAlda9oakylHV9lChoBkdAYgHv73wkPmgHTegDaAhHQJXW0icG1QZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVoAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooR3oScf8uX3deH5dH1Wj2dyACMA2luY5SKEU/TAjY6sHd6IwowoZt0YOMAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.99, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76a119271bd29904e4d582b51e5b7b604ecbe78317107fecc517dae986b53113
|
3 |
+
size 148351
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -26,12 +26,12 @@
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": 32,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.001,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -45,7 +45,7 @@
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
@@ -78,9 +78,9 @@
|
|
78 |
},
|
79 |
"n_envs": 16,
|
80 |
"n_steps": 2048,
|
81 |
-
"gamma": 0.
|
82 |
-
"gae_lambda": 0.
|
83 |
-
"ent_coef": 0.
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7edf21b43910>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7edf21b439a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7edf21b43a30>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7edf21b43ac0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7edf21b43b50>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7edf21b43be0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7edf21b43c70>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7edf21b43d00>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7edf21b43d90>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7edf21b43e20>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7edf21b43eb0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7edf21b43f40>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7edf21ce99c0>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": 32,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1717091764212804998,
|
30 |
"learning_rate": 0.001,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACY7gL321Cu6JaTjO0HlAzj/zqK5prpbNQAAgD8AAIA/mrPrvPbke7qKkva6yb4stzRriTvTCQ06AACAPwAAgD9mOcs84daquiabBzxWrZo2HeT+urgakTUAAIA/AACAP8AwkD0pcEO6K0P2vA9qrLwO+kq5/y2XvQAAAAAAAIA/ml6tPHvQirpm57U8Ewx+NbaX57qFumc0AACAPwAAgD8Axx+9uDb3uZ0JL7tPAkk2Nxg7uwUkTjoAAIA/AACAP81+/zx7nIK6Ny0DucUr7LWXLzG7aEwWOAAAgD8AAIA/psflPY+GEboNNXm55AUxtFBsEDrO0444AAAAAAAAgD/zqLu9w8V4upHFy7pC5821IRyDOxgx7jkAAIA/AACAP7NVw71/Kbg/mKCcvt7csL5vxwW+zUfvvQAAAAAAAAAAZiawuimIQLoDxkk74kN9NpMwiDvAL226AACAPwAAgD/aW8W94AeDPx1xdr4KcQa/kO9Fvo74FL4AAAAAAAAAAM0ClDxpDAS8XQLoPIGFsTza0o69Ma2SPQAAgD8AAIA/GpCCPVxzL7p1ixM8sI5JNqOJKrmOLD01AACAPwAAgD8AsGg8XPdWurr1ObtV/901F1MAuyiLVDoAAIA/AACAP2ZkQDz5PYI+E/E/PDNSrb6oWsU8lD1MPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGFnmPgeii+MAWyUTegDjAF0lEdAk7S99Dx9X3V9lChoBkdAZVZp7kXDWWgHTegDaAhHQJO6JoFmnO11fZQoaAZHQGEU7dJrcj9oB03oA2gIR0CTu+AdXDFZdX2UKGgGR0BiZtXq7iAEaAdN6ANoCEdAk8sDWPLgXXV9lChoBkdAaHzEZR8+imgHTegDaAhHQJPOVmbsniN1fZQoaAZHQGNqjBVMmF9oB03oA2gIR0CTz3alUIcBdX2UKGgGR0Bk/51eSjgyaAdN6ANoCEdAk9aF/MGHHnV9lChoBkdAYN9OxB3RomgHTegDaAhHQJPWpMFlkH51fZQoaAZHQGGB+u/1xsFoB03oA2gIR0CT4Cqd6LOzdX2UKGgGR0Bg5uIInjQzaAdN6ANoCEdAk+mx3u/lAHV9lChoBkdAV+pRwZOzp2gHTegDaAhHQJPp4Mz/IbR1fZQoaAZHQGEy+eFtbcJoB03oA2gIR0CT8QWjGkvcdX2UKGgGR0BhP4xYaHbiaAdN6ANoCEdAk/EfkFOfunV9lChoBkdAYzWMm4RVZWgHTegDaAhHQJP+/XQMQVd1fZQoaAZHQGc7IgV45cVoB03oA2gIR0CT/+aAnUlSdX2UKGgGR0Bi8qOHWSU1aAdN6ANoCEdAlAVD7uUliXV9lChoBkdAWo4AIY3vQWgHTegDaAhHQJQJvNwBHTZ1fZQoaAZHQC6Gmm+CbttoB0tpaAhHQJQN7Rw6ySp1fZQoaAZHQGITrvTgEU1oB03oA2gIR0CUED/t6X0HdX2UKGgGR0BextdVvMr3aAdN6ANoCEdAlBHi4axX4nV9lChoBkdAYc5YGMXJo2gHTegDaAhHQJQdtzV+Zw51fZQoaAZHQGFGqioKlYVoB03oA2gIR0CUIS3xWkrPdX2UKGgGR0BjKc5bQkX2aAdN6ANoCEdAlCJBo/Rmb3V9lChoBkdAYjax0MgEEGgHTegDaAhHQJQqJwOvt+l1fZQoaAZHQGJJ2uoxYaJoB03oA2gIR0CUKk+z+m3wdX2UKGgGR0Bl/Ptv4ubraAdN6ANoCEdAlDZqGcnVonV9lChoBkdAYhEizsyBTWgHTegDaAhHQJQ/kyRB/qh1fZQoaAZHQGPItaQmu1ZoB03oA2gIR0CUP8UUwi7kdX2UKGgGR0Bnu6bH6uW9aAdN6ANoCEdAlHSDGHYYi3V9lChoBkdAZTwjgydnTWgHTegDaAhHQJR0mQA+6iF1fZQoaAZHQGM5nH3lCC1oB03oA2gIR0CUfdMTewcHdX2UKGgGR0Be01Y2bXpXaAdN6ANoCEdAlH6ft+kP+XV9lChoBkdAZLcf7rLQomgHTegDaAhHQJSHX+MqBmR1fZQoaAZHQGM6SJKraM9oB03oA2gIR0CUi5mMfigkdX2UKGgGR0BoancafjCIaAdN6ANoCEdAlI2wOSW7e3V9lChoBkdAXPYM/hVENWgHTegDaAhHQJSPWA8Swnp1fZQoaAZHQGNBNQ9A5aNoB03oA2gIR0CUnumwJPZadX2UKGgGR0BiJWX9itq6aAdN6ANoCEdAlKJWeg+Ql3V9lChoBkdAXNM3eenQ6mgHTegDaAhHQJSjau9vjwR1fZQoaAZHQGFfn5zo2XNoB03oA2gIR0CUqmVy3kPudX2UKGgGR0Bi6tPtUn5SaAdN6ANoCEdAlKp6rq+rVHV9lChoBkdAYLcuNgjQiWgHTegDaAhHQJS0T+VC5Vh1fZQoaAZHQGVEfms/6ftoB03oA2gIR0CUwRVnEl3RdX2UKGgGR0Bk/I0dilSCaAdN6ANoCEdAlMFKHj6vaHV9lChoBkdAW0JcIJJGv2gHTegDaAhHQJTJMD5j6N51fZQoaAZHQGIrVGb1AZ9oB03oA2gIR0CUyUnyNGVidX2UKGgGR0BicdKmKqGUaAdN6ANoCEdAlNZfrrxAjnV9lChoBkdAYUQhUR3/xWgHTegDaAhHQJTXPhisnzB1fZQoaAZHQGUUlOoHcDdoB03oA2gIR0CU4DPFefI0dX2UKGgGR0BfT4KlYU35aAdN6ANoCEdAlOQbk4m1IHV9lChoBkdAYukAR02ca2gHTegDaAhHQJTmD6JqIrR1fZQoaAZHQGKf48lolD5oB03oA2gIR0CU54/o7muDdX2UKGgGR0AoI/7BO58SaAdLdWgIR0CU7j9JBgNPdX2UKGgGR0BilUkhRqGlaAdN6ANoCEdAlPK9SZSeiHV9lChoBkdAYLs77sOXmmgHTegDaAhHQJT2MIa99MN1fZQoaAZHQGcCzKDCgsdoB03oA2gIR0CU9zhegL7XdX2UKGgGR0BkiZa5f+juaAdN6ANoCEdAlP4fBBRht3V9lChoBkdAYNUykbgjyGgHTegDaAhHQJT+SE4//vR1fZQoaAZHQFoTmY0EX+FoB03oA2gIR0CVCuYiPhhqdX2UKGgGR0Bdt+xKQJXyaAdN6ANoCEdAlRQGMwUQCnV9lChoBkdAXxuSA6Mir2gHTegDaAhHQJUUPc1wYLt1fZQoaAZHQGYGIUBXCCVoB03oA2gIR0CVSQtkFwDOdX2UKGgGR0Bjsjhisny/aAdN6ANoCEdAlUkf6CUX53V9lChoBkdAU5fFR51Ng2gHS6doCEdAlU57tNSIg3V9lChoBkdAYkw60Y0l7mgHTegDaAhHQJVSESHuZ1F1fZQoaAZHQGjVx7RfF75oB03oA2gIR0CVUszdUKiPdX2UKGgGR0Bk0sJlar3kaAdN6ANoCEdAlVrZNfw7T3V9lChoBkdAZQEjASFoMGgHTegDaAhHQJVer8IiTt91fZQoaAZHQGdUllsguAZoB03oA2gIR0CVYiatcObzdX2UKGgGR0BgVuP1ct5EaAdN6ANoCEdAlWnstoSL63V9lChoBkdAYNMvTPSlWWgHTegDaAhHQJVv8XZXdTJ1fZQoaAZHQFs5s3AEdNpoB03oA2gIR0CVdEHpbD/EdX2UKGgGR0BfKjHKfWc0aAdN6ANoCEdAlXUv8uSOinV9lChoBkdAZH0ed07r9mgHTegDaAhHQJV7ELRa5gB1fZQoaAZHQGMuCPyTY/VoB03oA2gIR0CVeyfj0cwQdX2UKGgGR0BXpQ3o9s7/aAdLqGgIR0CVfB8baRISdX2UKGgGR0Bh9UKG+K0laAdN6ANoCEdAlYMmMbWEsnV9lChoBkdAYLqQV9F4LWgHTegDaAhHQJWKs3++/QB1fZQoaAZHQGLSAaef7JpoB03oA2gIR0CVkKYwZflZdX2UKGgGR0BkDAc/+sHTaAdN6ANoCEdAlZC5E+gUUXV9lChoBkdAZUkNVinYQWgHTegDaAhHQJWVv9aUzKt1fZQoaAZHQGPmeoDPnjhoB03oA2gIR0CVmQXfIjnndX2UKGgGR0BjFBJRO1v3aAdN6ANoCEdAlZm9SEUTMHV9lChoBkdAZmBLs8gZCWgHTegDaAhHQJWjj/Lkjop1fZQoaAZHQFICUH6dlNFoB0vCaAhHQJWlHTpgTh51fZQoaAZHQGEYC1RceKdoB03oA2gIR0CVqHT5ftx/dX2UKGgGR0Bk1TqIJqqPaAdN6ANoCEdAlawKHj6vaHV9lChoBkdAZkO4CIUJwGgHTegDaAhHQJWyWTKT0QN1fZQoaAZHQCRUSf16E8JoB0vCaAhHQJW5PCwbEP11fZQoaAZHQGHmSuhbnoxoB03oA2gIR0CVuZbRWtEHdX2UKGgGR0BpWYukDZDiaAdN6ANoCEdAlbp9n5BToHV9lChoBkdAS87rs0HhTGgHS7doCEdAlb6q8cuJ13V9lChoBkdAYZeJoCdSVGgHTegDaAhHQJXAg/JNj9Z1fZQoaAZHQGiBg0bcXWRoB03oA2gIR0CVwJYxcmjTdX2UKGgGR0BlY6BClabGaAdN6ANoCEdAlcGUXxe9jHV9lChoBkdAYqQF+NLlFWgHTegDaAhHQJXIEvysjml1fZQoaAZHQEs5Rb8m8dxoB0utaAhHQJXKqS2Yv391fZQoaAZHQGM0uIAOrhloB03oA2gIR0CVz4YUnG83dX2UKGgGR0BnKXWJ79hraAdN6ANoCEdAlda9oakylHV9lChoBkdAYgHv73wkPmgHTegDaAhHQJXW0icG1QZ1ZS4="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
|
|
78 |
},
|
79 |
"n_envs": 16,
|
80 |
"n_steps": 2048,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.99,
|
83 |
+
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88362
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3791cc14de751e9f98954f9200499ad0c995d7af6b6b9985df8d009842e3e7ca
|
3 |
size 88362
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43762
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b16dd3e9f0cca7d66f7b7e4de28e61587cb72844e560eceaae177126c67e357
|
3 |
size 43762
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 256.4394272, "std_reward": 13.475990645533432, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-05-30T18:22:27.358954"}
|