SegFormer_Mixed_Set2_Grayscale_mit-b5

This model is a fine-tuned version of nvidia/mit-b5 on Hasano20/Mixed_Set2_Grayscale dataset. It achieves the following results on the evaluation set:

  • Train-Loss: 0.0081
  • Loss: 0.0138
  • Mean Iou: 0.9805
  • Mean Accuracy: 0.9909
  • Overall Accuracy: 0.9952
  • Accuracy Background: 0.9959
  • Accuracy Melt: 0.9801
  • Accuracy Substrate: 0.9967
  • Iou Background: 0.9926
  • Iou Melt: 0.9554
  • Iou Substrate: 0.9934

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Melt Accuracy Substrate Iou Background Iou Melt Iou Substrate
0.1464 0.7042 50 0.1373 0.8536 0.9233 0.9584 0.9574 0.8385 0.9741 0.9444 0.6783 0.9381
0.0813 1.4085 100 0.0616 0.9196 0.9481 0.9808 0.9873 0.8668 0.9902 0.9748 0.8112 0.9728
0.0415 2.1127 150 0.0608 0.9074 0.9281 0.9802 0.9931 0.7978 0.9934 0.9769 0.7718 0.9734
0.0486 2.8169 200 0.0344 0.9475 0.9675 0.9876 0.9859 0.9190 0.9976 0.9836 0.8764 0.9824
0.028 3.5211 250 0.0226 0.9663 0.9845 0.9922 0.9929 0.9658 0.9949 0.9894 0.9205 0.9892
0.0309 4.2254 300 0.0214 0.9686 0.9839 0.9924 0.9931 0.9630 0.9956 0.9894 0.9273 0.9891
0.0136 4.9296 350 0.0248 0.9637 0.9828 0.9913 0.9901 0.9623 0.9959 0.9885 0.9151 0.9873
0.021 5.6338 400 0.0182 0.9717 0.9881 0.9933 0.9942 0.9752 0.9949 0.9908 0.9338 0.9906
0.0178 6.3380 450 0.0163 0.9747 0.9907 0.9940 0.9945 0.9826 0.9950 0.9913 0.9409 0.9918
0.0211 7.0423 500 0.0167 0.9746 0.9877 0.9939 0.9949 0.9725 0.9958 0.9911 0.9414 0.9913
0.0161 7.7465 550 0.0162 0.9751 0.9883 0.9939 0.9936 0.9747 0.9966 0.9910 0.9429 0.9914
0.0128 8.4507 600 0.0145 0.9769 0.9903 0.9944 0.9940 0.9805 0.9965 0.9916 0.9468 0.9924
0.0132 9.1549 650 0.0150 0.9780 0.9891 0.9946 0.9946 0.9757 0.9970 0.9918 0.9498 0.9923
0.0118 9.8592 700 0.0144 0.9775 0.9907 0.9946 0.9938 0.9815 0.9968 0.9915 0.9483 0.9927
0.0088 10.5634 750 0.0136 0.9792 0.9907 0.9949 0.9952 0.9804 0.9965 0.9922 0.9524 0.9930
0.0085 11.2676 800 0.0140 0.9789 0.9904 0.9948 0.9947 0.9797 0.9968 0.9921 0.9517 0.9929
0.0109 11.9718 850 0.0142 0.9782 0.9919 0.9948 0.9950 0.9849 0.9959 0.9921 0.9497 0.9929
0.009 12.6761 900 0.0134 0.9799 0.9908 0.9951 0.9951 0.9804 0.9969 0.9923 0.9542 0.9933
0.0105 13.3803 950 0.0135 0.9797 0.9912 0.9951 0.9953 0.9817 0.9966 0.9923 0.9536 0.9933
0.0094 14.0845 1000 0.0142 0.9786 0.9868 0.9948 0.9953 0.9673 0.9979 0.9923 0.9509 0.9927
0.0089 14.7887 1050 0.0136 0.9799 0.9907 0.9951 0.9955 0.9800 0.9967 0.9924 0.9541 0.9933
0.0118 15.4930 1100 0.0140 0.9794 0.9897 0.9950 0.9962 0.9763 0.9965 0.9924 0.9528 0.9932
0.0101 16.1972 1150 0.0142 0.9792 0.9914 0.9950 0.9950 0.9828 0.9965 0.9922 0.9521 0.9933
0.0081 16.9014 1200 0.0182 0.9748 0.9844 0.9942 0.9961 0.9601 0.9970 0.9923 0.9405 0.9915
0.0111 17.6056 1250 0.0154 0.9772 0.9913 0.9945 0.9942 0.9837 0.9961 0.9918 0.9471 0.9925
0.0078 18.3099 1300 0.0136 0.9800 0.9905 0.9951 0.9958 0.9791 0.9966 0.9925 0.9544 0.9933
0.0059 19.0141 1350 0.0139 0.9802 0.9915 0.9952 0.9953 0.9824 0.9967 0.9926 0.9545 0.9934
0.0081 19.7183 1400 0.0138 0.9805 0.9909 0.9952 0.9959 0.9801 0.9967 0.9926 0.9554 0.9934

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
8
Safetensors
Model size
84.6M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Hasano20/SegFormer_Mixed_Set2_Grayscale_mit-b5

Base model

nvidia/mit-b5
Finetuned
(42)
this model