SegFormer_mit-b5_Clean-Set3-Grayscale_Soft-Augmented

This model is a fine-tuned version of nvidia/mit-b5 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0143
  • Mean Iou: 0.9787
  • Mean Accuracy: 0.9898
  • Overall Accuracy: 0.9944
  • Accuracy Background: 0.9976
  • Accuracy Melt: 0.9776
  • Accuracy Substrate: 0.9943
  • Iou Background: 0.9927
  • Iou Melt: 0.9518
  • Iou Substrate: 0.9915

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Melt Accuracy Substrate Iou Background Iou Melt Iou Substrate
0.1578 0.5208 50 0.1042 0.8587 0.9293 0.9602 0.9866 0.8445 0.9568 0.9694 0.6723 0.9344
0.069 1.0417 100 0.0438 0.9400 0.9733 0.9845 0.9890 0.9435 0.9873 0.9817 0.8600 0.9783
0.1295 1.5625 150 0.0535 0.9282 0.9513 0.9807 0.9796 0.8764 0.9979 0.9774 0.8371 0.9700
0.0318 2.0833 200 0.0363 0.9495 0.9759 0.9867 0.9974 0.9462 0.9843 0.9851 0.8841 0.9792
0.041 2.6042 250 0.0290 0.9570 0.9763 0.9893 0.9918 0.9426 0.9946 0.9871 0.8987 0.9851
0.0281 3.125 300 0.0259 0.9628 0.9843 0.9898 0.9958 0.9691 0.9881 0.9859 0.9176 0.9849
0.0276 3.6458 350 0.0206 0.9669 0.9842 0.9917 0.9948 0.9643 0.9936 0.9907 0.9223 0.9878
0.0374 4.1667 400 0.0249 0.9628 0.9772 0.9907 0.9931 0.9421 0.9963 0.9903 0.9127 0.9854
0.056 4.6875 450 0.0197 0.9702 0.9847 0.9924 0.9943 0.9645 0.9952 0.9908 0.9309 0.9889
0.0092 5.2083 500 0.0171 0.9734 0.9889 0.9932 0.9961 0.9775 0.9932 0.9920 0.9384 0.9897
0.0217 5.7292 550 0.0183 0.9720 0.9880 0.9928 0.9968 0.9749 0.9923 0.9916 0.9355 0.9890
0.0185 6.25 600 0.0192 0.9720 0.9834 0.9929 0.9975 0.9580 0.9946 0.9920 0.9350 0.9891
0.0168 6.7708 650 0.0163 0.9748 0.9865 0.9935 0.9963 0.9680 0.9953 0.9920 0.9420 0.9903
0.014 7.2917 700 0.0160 0.9754 0.9850 0.9937 0.9960 0.9621 0.9968 0.9926 0.9431 0.9905
0.0133 7.8125 750 0.0253 0.9704 0.9842 0.9925 0.9963 0.9620 0.9942 0.9920 0.9308 0.9884
0.0103 8.3333 800 0.0168 0.9742 0.9852 0.9934 0.9977 0.9632 0.9946 0.9921 0.9405 0.9900
0.0142 8.8542 850 0.0139 0.9778 0.9868 0.9943 0.9974 0.9669 0.9959 0.9926 0.9494 0.9915
0.0112 9.375 900 0.0152 0.9761 0.9887 0.9938 0.9970 0.9748 0.9942 0.9927 0.9450 0.9905
0.0103 9.8958 950 0.0151 0.9769 0.9870 0.9940 0.9958 0.9687 0.9965 0.9928 0.9469 0.9909
0.0093 10.4167 1000 0.0133 0.9800 0.9898 0.9948 0.9967 0.9767 0.9960 0.9930 0.9546 0.9923
0.0108 10.9375 1050 0.0171 0.9763 0.9878 0.9931 0.9974 0.9733 0.9926 0.9898 0.9500 0.9890
0.0106 11.4583 1100 0.0141 0.9779 0.9880 0.9943 0.9972 0.9712 0.9956 0.9928 0.9494 0.9916
0.0118 11.9792 1150 0.0143 0.9787 0.9898 0.9944 0.9976 0.9776 0.9943 0.9927 0.9518 0.9915

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
8
Safetensors
Model size
84.6M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Hasano20/SegFormer_mit-b5_Clean-Set3-Grayscale_Augmented_Soft

Base model

nvidia/mit-b5
Finetuned
(42)
this model