SegFormer_mit-b5_Final-Set4-Grayscale_Not-Augmented_4_lr0.0001
This model is a fine-tuned version of nvidia/mit-b5 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0217
- Mean Iou: 0.9708
- Mean Accuracy: 0.9835
- Overall Accuracy: 0.9941
- Accuracy Background: 0.9965
- Accuracy Melt: 0.9584
- Accuracy Substrate: 0.9957
- Iou Background: 0.9940
- Iou Melt: 0.9288
- Iou Substrate: 0.9895
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Melt | Accuracy Substrate | Iou Background | Iou Melt | Iou Substrate |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1107 | 0.8850 | 50 | 0.1152 | 0.8138 | 0.8439 | 0.9627 | 0.9781 | 0.5623 | 0.9914 | 0.9677 | 0.5412 | 0.9325 |
0.0564 | 1.7699 | 100 | 0.0520 | 0.9163 | 0.9432 | 0.9829 | 0.9967 | 0.8488 | 0.9841 | 0.9806 | 0.7963 | 0.9721 |
0.0296 | 2.6549 | 150 | 0.0270 | 0.9557 | 0.9821 | 0.9906 | 0.9916 | 0.9621 | 0.9928 | 0.9893 | 0.8939 | 0.9839 |
0.042 | 3.5398 | 200 | 0.0226 | 0.9619 | 0.9763 | 0.9922 | 0.9934 | 0.9384 | 0.9969 | 0.9917 | 0.9077 | 0.9862 |
0.0166 | 4.4248 | 250 | 0.0300 | 0.9616 | 0.9768 | 0.9904 | 0.9957 | 0.9446 | 0.9903 | 0.9872 | 0.9153 | 0.9823 |
0.0159 | 5.3097 | 300 | 0.0203 | 0.9658 | 0.9863 | 0.9931 | 0.9946 | 0.9701 | 0.9941 | 0.9923 | 0.9169 | 0.9883 |
0.0121 | 6.1947 | 350 | 0.0221 | 0.9645 | 0.9795 | 0.9928 | 0.9937 | 0.9480 | 0.9968 | 0.9923 | 0.9141 | 0.9872 |
0.0149 | 7.0796 | 400 | 0.0220 | 0.9648 | 0.9821 | 0.9930 | 0.9949 | 0.9565 | 0.9951 | 0.9930 | 0.9138 | 0.9874 |
0.0352 | 7.9646 | 450 | 0.0215 | 0.9658 | 0.9764 | 0.9933 | 0.9959 | 0.9361 | 0.9971 | 0.9935 | 0.9158 | 0.9880 |
0.0106 | 8.8496 | 500 | 0.0201 | 0.9696 | 0.9820 | 0.9939 | 0.9961 | 0.9535 | 0.9962 | 0.9938 | 0.9256 | 0.9892 |
0.0095 | 9.7345 | 550 | 0.0216 | 0.9674 | 0.9796 | 0.9936 | 0.9955 | 0.9463 | 0.9969 | 0.9936 | 0.9202 | 0.9886 |
0.009 | 10.6195 | 600 | 0.0209 | 0.9702 | 0.9821 | 0.9941 | 0.9966 | 0.9539 | 0.9960 | 0.9940 | 0.9273 | 0.9894 |
0.0106 | 11.5044 | 650 | 0.0211 | 0.9700 | 0.9830 | 0.9940 | 0.9964 | 0.9568 | 0.9958 | 0.9940 | 0.9266 | 0.9893 |
0.0099 | 12.3894 | 700 | 0.0217 | 0.9708 | 0.9835 | 0.9941 | 0.9965 | 0.9584 | 0.9957 | 0.9940 | 0.9288 | 0.9895 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.0.1+cu117
- Datasets 2.19.2
- Tokenizers 0.19.1
- Downloads last month
- 9
Model tree for Hasano20/SegFormer_mit-b5_Final-Set4-Grayscale_Not-Augmented_4_lr0.0001
Base model
nvidia/mit-b5