NEPALIGPT-1.0 / README.md
Heem2's picture
Trained with Unsloth
7854dc4 verified
|
raw
history blame
2.56 kB
metadata
language:
  - en
license: apache-2.0
tags:
  - text-generation-inference
  - transformers
  - unsloth
  - mistral
  - trl
  - sft
base_model: unsloth/mistral-7b-bnb-4bit

Nepali GPT

Nepali GPT is a large Nepali language fine-tuned model based on Mixtral_7B.The fine-tuning process uses Unsloth, expediting the training process for optimal efficiency.

Model Description

  • Model type: A 7B fine-tuned model
  • Primary Language(s): Nepali
  • License: Mistral

Installation

#Install Unsloth
%%capture
import torch
major_version, minor_version = torch.cuda.get_device_capability()
# Must install separately since Colab has torch 2.2.1, which breaks packages
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
if major_version >= 8:
    # Use this for new GPUs like Ampere, Hopper GPUs (RTX 30xx, RTX 40xx, A100, H100, L40)
    !pip install --no-deps packaging ninja einops flash-attn xformers trl peft accelerate bitsandbytes
else:
    # Use this for older GPUs (V100, Tesla T4, RTX 20xx)
    !pip install --no-deps xformers trl peft accelerate bitsandbytes
pass

Model loading

from unsloth import FastLanguageModel
import torch
max_seq_length = 2048
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = "Heem2/NEPALIGPT-1.0",
    max_seq_length = max_seq_length,
    dtype = dtype,
    load_in_4bit = load_in_4bit,
)

prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{}

### Input:
{}

### Response:
{}"""

Inference

FastLanguageModel.for_inference(model)
inputs = tokenizer(
[
    prompt.format(
        "नेपालको बारेमा व्याख्या गर्नुहोस्?", # instruction
        "संस्कृति, भाषा, भूगोल, राजनीति, जलवायु", # input
        "", # output - leave this blank for generation!
    )
], return_tensors = "pt").to("cuda")

outputs = model.generate(**inputs, max_new_tokens = 1000, use_cache = True)
tokenizer.batch_decode(outputs)

Citation Information

If you find this model useful, please consider giving 👏 and citing:

@heem2
}

Contributions

  • This is developed by Hem Bahadur Gurung.Feel free to DM if you have any questions.