|
--- |
|
library_name: setfit |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
metrics: |
|
- accuracy |
|
widget: |
|
- text: Someone comes out of the shack and shoves one of the kids to the ground. He |
|
- text: He approaches the object and reads a plaque on its side. Someone |
|
- text: Later at someone's family farm, someone sees the lights on in the hangar. |
|
Someone |
|
- text: Someone stands looking over some of the old photographs as someone goes through |
|
the mess on the desk. Someone |
|
- text: Snow blows around a city of towering crystalline structures. A warrior |
|
pipeline_tag: text-classification |
|
inference: true |
|
base_model: sentence-transformers/paraphrase-mpnet-base-v2 |
|
model-index: |
|
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.08852459016393442 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2 |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) |
|
- **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 9 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 7 | <ul><li>'Someone turns at the sound of the distant horns. 6000 horsemen, lead by people,'</li><li>'A man is playing the drums while wearing earphones. We'</li><li>'Now, someone stands below an overcast sky. Strands of his greasy black hair'</li></ul> | |
|
| 5 | <ul><li>'Someone throws them onto someone and punches the both of them in the face. The crone then'</li><li>'Someone stirs the cookie dough in a bowl. The dough'</li><li>'A logo for a sports even is shown. There'</li></ul> | |
|
| 8 | <ul><li>'A teenage girl is dressed in a long sleeve red leotard and jumps up on a balance beam. Once she is on, she'</li><li>'Someone watches with a heaving chest. He'</li><li>'A woman smiles at the camera. The woman'</li></ul> | |
|
| 0 | <ul><li>"Someone changes into a Spanish policeman's outfit and heads down an outside staircase with the packed up rifle. As someone leaves, someone"</li><li>'He shows a water bottle he has along with a brush, and uses the brush to remove snow from the dash window of a car and the water to remove any excess snow left on the windshield. Once finished, he'</li><li>"Someone and someone step into a tent. Someone's mouth"</li></ul> | |
|
| 2 | <ul><li>'People suddenly wrap their arms around each other and kiss hungrily. Someone'</li><li>'Loose papers fly and a wind blows blankets off the bed. Someone'</li><li>'Together, they wander a few steps without taking their eyes off of him. Now in the car as someone drives, someone'</li></ul> | |
|
| 1 | <ul><li>'Villagers stare up at the night sky. Flashes of white light'</li><li>'The water gets rough as the past through some rocks. Several people'</li><li>'We see a title screen. We'</li></ul> | |
|
| 3 | <ul><li>'He is shown playing a game with a virtual sumo wrestler. The shorter man'</li><li>'The Indian guy keeps his malevolent gaze on someone and looks away. The barmaid'</li><li>'We see a man in red talking. A man'</li></ul> | |
|
| 4 | <ul><li>'He turns away and covers his face with one hand. Someone'</li><li>'With a nod, the man hands it over to the defeated boy. Someone'</li><li>"On the shop floor, his little helper helps himself to an expensive handbag from a display cabinet, then some women's designer shoes, all of which are detailed on a list. He"</li></ul> | |
|
| 6 | <ul><li>'The girl does 2 perfect flips. The girls'</li><li>'The man claps his hands together. The man'</li><li>'A grey bunny is standing on a bed on a black towel eating something in his hand. As he eats, the bunny'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 0.0885 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("HelgeKn/Swag-multi-class-10") |
|
# Run inference |
|
preds = model("He approaches the object and reads a plaque on its side. Someone") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 6 | 13.9667 | 40 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0 | 10 | |
|
| 1 | 10 | |
|
| 2 | 10 | |
|
| 3 | 10 | |
|
| 4 | 10 | |
|
| 5 | 10 | |
|
| 6 | 10 | |
|
| 7 | 10 | |
|
| 8 | 10 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (16, 16) |
|
- num_epochs: (2, 2) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 20 |
|
- body_learning_rate: (2e-05, 2e-05) |
|
- head_learning_rate: 2e-05 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:----:|:-------------:|:---------------:| |
|
| 0.0044 | 1 | 0.2849 | - | |
|
| 0.2222 | 50 | 0.1894 | - | |
|
| 0.4444 | 100 | 0.0847 | - | |
|
| 0.6667 | 150 | 0.0578 | - | |
|
| 0.8889 | 200 | 0.0584 | - | |
|
| 1.1111 | 250 | 0.011 | - | |
|
| 1.3333 | 300 | 0.0183 | - | |
|
| 1.5556 | 350 | 0.0106 | - | |
|
| 1.7778 | 400 | 0.0125 | - | |
|
| 2.0 | 450 | 0.0071 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.9.13 |
|
- SetFit: 1.0.1 |
|
- Sentence Transformers: 2.2.2 |
|
- Transformers: 4.36.0 |
|
- PyTorch: 2.1.1+cpu |
|
- Datasets: 2.15.0 |
|
- Tokenizers: 0.15.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |