Swag-multi-class-10 / README.md
HelgeKn's picture
Add SetFit model
736e84a
---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: Someone comes out of the shack and shoves one of the kids to the ground. He
- text: He approaches the object and reads a plaque on its side. Someone
- text: Later at someone's family farm, someone sees the lights on in the hangar.
Someone
- text: Someone stands looking over some of the old photographs as someone goes through
the mess on the desk. Someone
- text: Snow blows around a city of towering crystalline structures. A warrior
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.08852459016393442
name: Accuracy
---
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 9 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 | <ul><li>'Someone turns at the sound of the distant horns. 6000 horsemen, lead by people,'</li><li>'A man is playing the drums while wearing earphones. We'</li><li>'Now, someone stands below an overcast sky. Strands of his greasy black hair'</li></ul> |
| 5 | <ul><li>'Someone throws them onto someone and punches the both of them in the face. The crone then'</li><li>'Someone stirs the cookie dough in a bowl. The dough'</li><li>'A logo for a sports even is shown. There'</li></ul> |
| 8 | <ul><li>'A teenage girl is dressed in a long sleeve red leotard and jumps up on a balance beam. Once she is on, she'</li><li>'Someone watches with a heaving chest. He'</li><li>'A woman smiles at the camera. The woman'</li></ul> |
| 0 | <ul><li>"Someone changes into a Spanish policeman's outfit and heads down an outside staircase with the packed up rifle. As someone leaves, someone"</li><li>'He shows a water bottle he has along with a brush, and uses the brush to remove snow from the dash window of a car and the water to remove any excess snow left on the windshield. Once finished, he'</li><li>"Someone and someone step into a tent. Someone's mouth"</li></ul> |
| 2 | <ul><li>'People suddenly wrap their arms around each other and kiss hungrily. Someone'</li><li>'Loose papers fly and a wind blows blankets off the bed. Someone'</li><li>'Together, they wander a few steps without taking their eyes off of him. Now in the car as someone drives, someone'</li></ul> |
| 1 | <ul><li>'Villagers stare up at the night sky. Flashes of white light'</li><li>'The water gets rough as the past through some rocks. Several people'</li><li>'We see a title screen. We'</li></ul> |
| 3 | <ul><li>'He is shown playing a game with a virtual sumo wrestler. The shorter man'</li><li>'The Indian guy keeps his malevolent gaze on someone and looks away. The barmaid'</li><li>'We see a man in red talking. A man'</li></ul> |
| 4 | <ul><li>'He turns away and covers his face with one hand. Someone'</li><li>'With a nod, the man hands it over to the defeated boy. Someone'</li><li>"On the shop floor, his little helper helps himself to an expensive handbag from a display cabinet, then some women's designer shoes, all of which are detailed on a list. He"</li></ul> |
| 6 | <ul><li>'The girl does 2 perfect flips. The girls'</li><li>'The man claps his hands together. The man'</li><li>'A grey bunny is standing on a bed on a black towel eating something in his hand. As he eats, the bunny'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.0885 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("HelgeKn/Swag-multi-class-10")
# Run inference
preds = model("He approaches the object and reads a plaque on its side. Someone")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 6 | 13.9667 | 40 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 10 |
| 1 | 10 |
| 2 | 10 |
| 3 | 10 |
| 4 | 10 |
| 5 | 10 |
| 6 | 10 |
| 7 | 10 |
| 8 | 10 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0044 | 1 | 0.2849 | - |
| 0.2222 | 50 | 0.1894 | - |
| 0.4444 | 100 | 0.0847 | - |
| 0.6667 | 150 | 0.0578 | - |
| 0.8889 | 200 | 0.0584 | - |
| 1.1111 | 250 | 0.011 | - |
| 1.3333 | 300 | 0.0183 | - |
| 1.5556 | 350 | 0.0106 | - |
| 1.7778 | 400 | 0.0125 | - |
| 2.0 | 450 | 0.0071 | - |
### Framework Versions
- Python: 3.9.13
- SetFit: 1.0.1
- Sentence Transformers: 2.2.2
- Transformers: 4.36.0
- PyTorch: 2.1.1+cpu
- Datasets: 2.15.0
- Tokenizers: 0.15.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->