|
--- |
|
library_name: setfit |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
datasets: |
|
- HelgeKn/SATHAME-generator-train |
|
metrics: |
|
- accuracy |
|
widget: |
|
- text: 'Mr. Hammond worries that old age and the flightiness of youth will diminish |
|
the ranks of the East Anglian group that keeps the Aslacton bells pealing . ' |
|
- text: 'The others here today live elsewhere . ' |
|
- text: '`` So crunch , crunch , crunch , bang , bang , bang -- here come the ringers |
|
from above , making a very obvious exit while the congregation is at prayer , |
|
`` he says . ' |
|
- text: 'Then , at a signal , the ringers begin varying the order in which the bells |
|
sound without altering the steady rhythm of the striking . ' |
|
pipeline_tag: text-classification |
|
inference: true |
|
base_model: sentence-transformers/paraphrase-mpnet-base-v2 |
|
--- |
|
|
|
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2 |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [HelgeKn/SATHAME-generator-train](https://huggingface.co/datasets/HelgeKn/SATHAME-generator-train) dataset that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) |
|
- **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 4 classes |
|
- **Training Dataset:** [HelgeKn/SATHAME-generator-train](https://huggingface.co/datasets/HelgeKn/SATHAME-generator-train) |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 0 | <ul><li>'The art of change-ringing is peculiar to the English , and , like most English peculiarities , unintelligible to the rest of the world . '</li><li>'Of all scenes that evoke rural England , this is one of the loveliest : An ancient stone church stands amid the fields , the sound of bells cascading from its tower , calling the faithful to evensong . '</li><li>'In the tower , five men and women pull rhythmically on ropes attached to the same five bells that first sounded here in 1614 . '</li></ul> | |
|
| 3 | <ul><li>'The parishioners of St. Michael and All Angels stop to chat at the church door , as members here always have . '</li><li>'History , after all , is not on his side . '</li><li>"According to a nationwide survey taken a year ago , nearly a third of England 's church bells are no longer rung on Sundays because there is no one to ring them . "</li></ul> | |
|
| 2 | <ul><li>'Now , only one local ringer remains : 64-year-old Derek Hammond . '</li><li>'The others here today live elsewhere . '</li><li>'No one speaks , and the snaking of the ropes seems to make as much sound as the bells themselves , muffled by the ceiling . '</li></ul> | |
|
| 1 | <ul><li>'`` To ring for even one service at this tower , we have to scrape , `` says Mr. Hammond , a retired water-authority worker . `` '</li><li>'When their changes are completed , and after they have worked up a sweat , ringers often skip off to the local pub , leaving worship for others below . '</li><li>"Two years ago , the Rev. Jeremy Hummerstone , vicar of Great Torrington , Devon , got so fed up with ringers who did n't attend service he sacked the entire band ; the ringers promptly set up a picket line in protest . "</li></ul> | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("HelgeKn/Testing-blub") |
|
# Run inference |
|
preds = model("The others here today live elsewhere . ") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 8 | 27.275 | 45 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0 | 10 | |
|
| 1 | 10 | |
|
| 2 | 10 | |
|
| 3 | 10 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (16, 16) |
|
- num_epochs: (2, 2) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 20 |
|
- body_learning_rate: (2e-05, 2e-05) |
|
- head_learning_rate: 2e-05 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-----:|:----:|:-------------:|:---------------:| |
|
| 0.01 | 1 | 0.2799 | - | |
|
| 0.5 | 50 | 0.1155 | - | |
|
| 1.0 | 100 | 0.0023 | - | |
|
| 1.5 | 150 | 0.0008 | - | |
|
| 2.0 | 200 | 0.0017 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.9.13 |
|
- SetFit: 1.0.1 |
|
- Sentence Transformers: 2.2.2 |
|
- Transformers: 4.36.0 |
|
- PyTorch: 2.1.1+cpu |
|
- Datasets: 2.15.0 |
|
- Tokenizers: 0.15.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |